Abstract

The present paper reports a numerical study of fully developed turbulent flow over a flat plate with a step change from a smooth to a rough surface. The Reynolds number based on momentum thickness for the smooth flow was Reθ=5950. The focus of the study was to investigate the capability of the Reynolds-averaged Navier–Stokes (RANS) equations to predict the internal boundary layer (IBL) created by the flow configuration. The numerical solution used a two-layer kε model to implement the effects of surface roughness on the turbulence and mean flow fields via the use of a hydrodynamic roughness length y0. The prediction for the mean velocity field revealed a development zone immediately downstream of the step in which the mean velocity profile included a lower region affected by the surface roughness below and an upper region with the characteristics of the smooth-wall boundary layer above. In this zone, both the turbulence kinetic energy and Reynolds shear stress profiles were characterized by a significant reduction in magnitude in the outer region of the flow that is unaffected by the rough surface. The turbulence kinetic energy profile was used to estimate the thickness of the IBL, and the resulting growth rate closely matched the experimental results. As such, the IBL is a promising test case for assessing the ability of RANS models to predict the discrete roughness configurations often encountered in industrial and environmental applications.

References

References
1.
Durbin
,
P. A.
,
Medic
,
G.
,
Seo
,
J. -M.
,
Eaton
,
J. K.
, and
Song
,
S.
,
2000
, “
Rough Wall Modification of Two-Layer kε Model
,”
ASME J. Fluids Eng.
,
123
(
1
), pp.
16
21
.10.1115/1.1343086
2.
Savelyev
,
S. A.
, and
Taylor
,
P. A.
,
2005
, “
Internal Boundary Layers—1: Height Formulae for Neutral and Diabatic Flows
,”
Boundary-Layer Meteorol.
,
115
(
1
), pp.
1
25
.10.1007/s10546-004-2122-z
3.
Pendergrass
,
W.
, and
Arya
,
S. P. S.
,
1984
, “
Dispersion in Neutral Boundary Layer Over a Step Change in Surface Roughness—1: Mean Flow and Turbulence Structure
,”
Atmos. Environ.
,
18
(
7
), pp.
1267
1279
.10.1016/0004-6981(84)90037-4
4.
Elliott
,
W. P.
,
1958
, “
The Growth of the Atmospheric Internal Boundary Layer
,”
Trans. Am. Geophys. Union
,
39
(
6
), pp.
1048
1054
.10.1029/TR039i006p01048
5.
Panofsky
,
H. A.
, and
Townsend
,
A. A.
,
1964
, “
Change of Terrain Roughness and the Wind Profile
,”
J. R. Meteorol. Soc.
,
90
(
384
), pp.
147
155
.10.1002/qj.49709038404
6.
Plate
,
E. J.
, and
Hidy
,
G. M.
,
1967
, “
Laboratory Study of Air Flowing Over a Smooth Surface Onto Small Water Waves
,”
J. Geophys. Res.
,
72
(
18
), pp.
4627
4641
.10.1029/JZ072i018p04627
7.
Schofield
,
W. H.
,
1981
, “
Turbulent Shear Flows Over a Step Change in Surface Roughness
,”
ASME J. Fluids Eng.
,
103
(
2
), pp.
344
351
.10.1115/1.3241744
8.
Wood
,
D. H.
,
1982
, “
Internal Boundary Layer Growth Following a Step Change in Surface Roughness
,”
Boundary-Layer Meteorol.
,
22
(
2
), pp.
241
244
.10.1007/BF00118257
9.
Bradley
,
E. F.
,
1968
, “
A Micrometeorological Study of Velocity Profiles and Surface Drag in the Region Modified by a Change in Surface Roughness
,”
J. R. Meteorol. Soc.
,
94
(
401
), pp.
361
379
.10.1002/qj.49709440111
10.
Antonia
,
R. A.
, and
Luxton
,
R. E.
,
1971
, “
The Response of a Turbulent Boundary Layer to a Step Change in Surface Roughness—Part 1: Smooth to Rough
,”
J. Fluid Mech.
,
48
(
4
), pp.
721
761
.10.1017/S0022112071001824
11.
Cheng
,
H.
, and
Castro
,
I. P.
,
2002
, “
Near-Wall Flow Development After a Step Change in Surface Roughness
,”
Boundary-Layer Meteorol.
,
105
(
3
), pp.
411
432
.10.1023/A:1020355306788
12.
Efros
,
V.
, and
Krogstad
,
P. Å.
,
2011
, “
Development of Turbulent Boundary Layer After a Step From Smooth to Rough Surface
,”
Exp Fluids
,
51
(
6
), pp.
1563
1575
.10.1007/s00348-011-1167-2
13.
Meng
,
F.
,
Bergstrom
,
D. J.
, and
Wang
,
B. C.
,
2016
, “
Scaling the Internal Boundary Layer
,”
Progress in Wall Turbulence 2 (ERCOFTAC Series)
,
M.
Stanislas
,
J.
Jimenez
, and
I.
Marusic
, eds., Vol.
23
,
Springer
,
Cham, Switzerland
.
14.
Taylor
,
P. A.
,
1968
, “
On Wind and Shear Stress Profiles Above a Change in Surface Roughness
,”
J. R. Meteorol. Soc.
,
95
(
403
), pp.
241
244
.10.1002/qj.49709540306
15.
Peterson
,
E. W.
,
1969
, “
Modification of Mean Flow and Turbulent Energy by a Change in Surface Roughness Under Conditions of Neutral Stability
,”
J. R. Meteorol. Soc.
,
95
(
405
), pp.
561
575
.10.1002/qj.49709540509
16.
Bradshaw
,
P.
,
Ferriss
,
D. H.
, and
Atwell
,
N. P.
,
1967
, “
Calculation of Boundary-Layer Development Using the Turbulent Energy Equation
,”
J. Fluid Mech.
,
28
(
3
), pp.
593
616
.10.1017/S0022112067002319
17.
Shir
,
C. C.
,
1972
, “
A Numerical Computation of Air Flow Over a Sudden Change of Surface Roughness
,”
J. Atmos. Sci.
,
29
(
2
), pp.
304
310
.10.1175/1520-0469(1972)029<0304:ANCOAF>2.0.CO;2
18.
Rao
,
K. S.
,
Wyngaard
,
J. C.
, and
Coté
,
O. R.
,
1974
, “
The Structure of the Two-Dimensional Internal Boundary Layer Over a Sudden Change of Surface Roughness
,”
J. Atmos. Sci.
,
31
(
3
), pp.
738
746
.10.1175/1520-0469(1974)031<0738:TSOTTD>2.0.CO;2
19.
Lee
,
S. –H.
, and
Sung
,
H. J.
,
2007
, “
Direct Numerical Simulation of the Turbulent Boundary Layer Over a Rod-Roughnened Wall
,”
J. Fluid Mech.
,
584
, pp.
125
146
.10.1017/S0022112007006465
20.
Lee
,
J. H.
,
Sung
,
H. J.
, and
Krogstad
,
P. Å.
,
2011
, “
Direct Numerical Simulation of the Turbulent Boundary Layer on Cube-Roughened Wall
,”
J. Fluid Mech.
,
669
, pp.
397
431
.10.1017/S0022112010005082
21.
Lee
,
J. H.
,
2015
, “
Turbulent Boundary Layer Flow With a Step Change From Smooth to Rough
,”
Int. J. Heat Fluid Flow
,
54
, pp.
39
54
.10.1016/j.ijheatfluidflow.2015.05.001
22.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
23.
Schlichting
,
H.
,
1979
,
Boundary Layer Theory
,
7th ed.
,
McGraw-Hill
,
New York
24.
Smalley
,
R. J.
,
Antonia
,
R. A.
, and
Djenidi
,
L.
,
2001
, “
Self-Preservation of Rough-Wall Turbulent Boundary Layers
,”
J. Mech.
,
20
(
5
), pp.
591
602
.10.1016/S0997-7546(01)01152-9
25.
Krogstad
,
P. Å.
, and
Nickels
,
T.
,
2006
, “
Turbulent Boundary Layer With a Step Change in Surface Roughness
,”
Conference on Modelling Fluid Flow (CMFF'06)
,
Budapest, Hungary
,
Sept. 6–9
, pp.
568
573
.
26.
Schlatter
,
P.
,
Li
,
Q.
,
Brethouwer
,
G.
,
Johansson
,
A. V.
, and
Henningson
,
D. S.
,
2011
, “
Structure of a Turbulent Boundary Layer Studied by DNS
,”
H.
Kuerten
,
B.
Geurts
,
V.
Armenio
, and
J.
Fröhlich
, eds.,
Direct and Large-Eddy Simulation VIII (ERCOFTAC Series)
, Vol.
15
,
Springer
,
Dordrecht, The Netherlands
.
27.
Flack
,
K. A.
,
Schultz
,
M. P.
, and
Connelly
,
J. S.
,
2007
, “
Examination of Critical Roughness Height for Outer Layer Similarity
,”
Phys. Fluids
,
19
(
9
), p.
095104
.10.1063/1.2757708
28.
Krogstad
,
P. Å.
, and
Antonia
,
R. A.
,
1999
, “
Surface Roughness Effects in Turbulent Boundary Layers
,”
Exp. Fluids
,
27
(
5
), pp.
450
460
.10.1007/s003480050370
29.
Degraaff
,
D. B.
, and
Eaton
,
J. K.
,
2000
, “
Reynolds-Number Scaling of the Flat-Plate Turbulent Boundary Layer
,”
J. Fluid Mech.
,
422
, pp.
319
346
.10.1017/S0022112000001713
30.
Marusic
,
I.
, and
Kunkel
,
G. J.
,
2003
, “
Streamwise Turbulence Intensity Formulation for Flat-Plate Boundary Layers
,”
Phys. Fluids
,
15
(
8
), pp.
2461
2464
.10.1063/1.1589014
31.
Antonia
,
R. A.
, and
Krogstad
,
P. Å.
,
2001
, “
Turbulence Structure in Boundary Layers Over Different Types of Surface Roughness
,”
Fluid Dyn. Res.
,
28
(
2
), pp.
139
157
.10.1016/S0169-5983(00)00025-3
32.
Erm
,
L.
,
1988
, “
Low-Reynolds-Number Turbulent Boundary Layers
,” Ph.D. thesis, University of Melbourne, Melbourne, Australia.
You do not currently have access to this content.