A series of experiments were conducted to investigate the effect of the inclination angle of the cylinders on the wake flow characteristics for flow past two and three side-by-side inclined cylinders using the particle image velocimetry (PIV). Depending on the inclination angles, purely deflected gap flow, no-deflection gap flow, and flip-flop gap flow patterns are identified for both two and three cylinder cases. In both two and three cylinder cases, the flows through the gaps are found to be in purely deflected flow pattern at small inclination angles and flip-flop pattern at large inclination angles. For the three-cylinder case with flip-flop gap flow pattern, gap flows are predominantly in the outward deflection pattern (toward the two side cylinders) and are occasionally deflected inward (toward the middle cylinder). The gap flow deflection angles for all the tested inclination angles of the cylinders are quantified through statistical analysis, in addition to identifying the flow patterns. The deflection angle is found to decrease with increasing inclination angle for both two- and three-cylinder cases, and the outward deflection angle for the three cylinder cases is greater than the deflection angle of the two-cylinder case. The probability density distributions of the deflection angles approximately follow normal distribution. In the two-cylinder case, the mean flow field is asymmetrical about the x-axis when the possibility of the flow deflection toward one side of the gap is greater than that toward the other side.

References

1.
Ishigai
,
S.
,
Nishikawa
,
E.
,
Nishimura
,
K.
, and
Cho
,
K.
,
1972
, “
Experimental Study on Structure of Gas Flow in Tube Banks With Tube Axis Normal to Flow—Part 1, Karman Vortex Flow From Two Tubes at Various Spacings
,”
Bull. JSME
,
15
(
86
), pp.
949
956
.
2.
Zdravkovich
,
M. M.
,
1977
, “
Review of Flow Interference Between Two Circular Cylinders in Various Arrangements
,”
ASME J. Fluids Eng.
,
99
(
4
), pp.
618
633
.
3.
Sumner
,
D.
,
Wong
,
S. S. T.
,
Price
,
S. J.
, and
Païdoussis
,
M. P.
,
1999
, “
Fluid Behaviour of Side-by-Side Circular Cylinders in Steady Cross-Flow
,”
J. Fluids Struct.
,
13
(
3
), pp.
309
338
.
4.
Xu
,
S. J.
,
Zhou
,
Y.
, and
So
,
R. M. C.
,
2003
, “
Reynolds Number Effects on the Flow Structure Behind Two Side-by-Side Cylinders
,”
Phys. Fluids
,
15
(
5
), pp.
1214
1219
.
5.
Zhou
,
Y.
,
2003
, “
Vortical Structures Behind Three Side-by-Side Cylinders
,”
Exp. Fluids
,
34
(
1
), pp.
68
76
.
6.
Bearman
,
P. W.
, and
Wadcock
,
A. J.
,
1973
, “
The Interaction Between a Pair of Circular Cylinders Normal to a Stream
,”
J. Fluid Mech.
,
61
(
3
), pp.
499
512
.
7.
Williamson
,
C. H. H.
,
1985
, “
Evolution of a Single Wake Behind a Pair of Bluff Bodies
,”
J. Fluid Mech.
,
159
(
1
), pp.
1
18
.
8.
Zhou
,
Y.
,
Zhang
,
H. J.
, and
Yiu
,
M. W.
,
2002
, “
The Turbulent Wake of Two Side-by-Side Circular Cylinders
,”
J. Fluid Mech.
,
458
(
458
), pp.
303
332
.
9.
Kim
,
H. J.
, and
Durbin
,
P. A.
,
1988
, “
Investigation of the Flow Between a Pair of Circular Cylinders in the Flopping Regime
,”
J. Fluid Mech.
,
196
(
196
), pp.
431
448
.
10.
Wang
,
Z.
, and
Zhou
,
Y.
,
2005
, “
Vortex Interactions in a Two Side-by-Side Cylinder Near-Wake
,”
Int. J. Heat Fluid Flow
,
26
(
3
), pp.
362
377
.
11.
Alam
,
M. M.
, and
Zhou
,
Y.
,
2013
, “
Intrinsic Features of Flow Around Two Side-by-Side Square Cylinders
,”
Phys. Fluids
,
25
(
8
), p.
085106
.
12.
Chen
,
L.
,
Tu
,
J. Y.
, and
Yeoh
,
G. H.
,
2003
, “
Numerical Simulation of Turbulent Wake Flows Behind Two Side-by-Side Cylinders
,”
J. Fluids Struct.
,
18
(
3–4
), pp.
387
403
.
13.
Kang
,
S.
,
2003
, “
Characteristics of Flow Over Two Circular Cylinders in a Side-by-Side Arrangement at Low Reynolds Numbers
,”
Phys. Fluids
,
15
(
9
), pp.
2486
2498
.
14.
Kang
,
S.
,
2004
, “
Numerical Study on Laminar Flow Over Three Side-by-Side Cylinders
,”
KSME Int. J.
,
18
(
10
), pp.
1869
1879
.
15.
Afgan
,
I.
,
Kahil
,
Y.
,
Benhamadouche
,
S.
, and
Sagaut
,
P.
,
2011
, “
Large Eddy Simulation of the Flow Around Single and Two Side-by-Side Cylinders at Subcritical Reynolds Numbers
,”
Phys. Fluids
,
23
(
7
), p.
075101
.
16.
Carini
,
M.
,
Giannetti
,
F.
, and
Auteri
,
F.
,
2014
, “
First Instability and Structural Sensitivity of the Flow Past Two Side-by-Side Cylinders
,”
J. Fluid Mech.
,
749
(
2
), pp.
627
648
.
17.
Carini
,
M.
,
Giannetti
,
F.
, and
Auteri
,
F.
,
2014
, “
On the Origin of the Flip-Flop Instability of Two Side-by-Side Cylinder Wakes
,”
J. Fluid Mech.
,
742
(
3
), pp.
552
576
.
18.
Shirakashi
,
M.
,
Isono
,
M.
, and
Wakiya
,
S.
,
1986
, “
Structure of Karman Vortex Shedding From a Yawed Cylinder in a Uniform Flow
,”
JSME
,
52
(
481
), pp.
3152
3158
.
19.
Hogan
,
J. D.
, and
Hall
,
J. W.
,
2010
, “
The Spanwise Dependence of Vortex-Shedding From Yawed Circular Cylinders
,”
ASME J. Pressure Vessel Technol.
,
132
(
3
), p.
031301
.
20.
Franzini
,
G. R.
,
Gonçalves
,
R. T.
,
Meneghini
,
J. R.
, and
Fujarra
,
A. L. C.
,
2014
, “
Experimental Investigation Into the Flow Around a Stationary and Yawed Cylinder Under Asymmetrical End Conditions
,”
Int. J. Offshore Polar Eng.
,
24
(
2
), pp.
90
97
.
21.
Zhou
,
T.
,
Wang
,
H.
,
Razali
,
S. F. M.
,
Zhou
,
Y.
, and
Cheng
,
L.
,
2010
, “
Three-Dimensional Vorticity Measurements in the Wake of a Yawed Circular Cylinder
,”
Phys. Fluids
,
22
(
1
), p.
015108
.
22.
Wang
,
H. F.
,
Razali
,
S. F. M.
,
Zhou
,
T. M.
,
Zhou
,
Y.
, and
Cheng
,
L.
,
2011
, “
Streamwise Evolution of an Inclined Cylinder Under Wake
,”
Exp. Fluids
,
51
(
2
), pp.
553
570
.
23.
Vakil
,
A.
, and
Green
,
S. I.
,
2009
, “
Drag and Lift Coefficients of Inclined Finite Circular Cylinders at Moderate Reynolds Numbers
,”
Comput. Fluids
,
38
(
9
), pp.
1771
1781
.
24.
Zhao
,
M.
,
Cheng
,
L.
, and
Zhou
,
T.
,
2009
, “
Direct Numerical Simulation of Three-Dimensional Flow Past a Yawed Circular Cylinder of Infinite Length
,”
J. Fluids Struct.
,
25
(
5
), pp.
831
847
.
25.
Shao
,
W. Y.
,
Zhang
,
Y. P.
,
Zhu
,
D. Z.
, and
Zhang
,
T. Q.
,
2013
, “
Drag Force on a Free Surface-Piercing Yawed Circular Cylinder in Steady Flow
,”
J. Fluids Struct.
,
43
(6
), pp.
145
163
.
26.
Thapa
,
J.
,
Zhao
,
M.
,
Zhou
,
T.
, and
Cheng
,
L.
,
2014
, “
Three-Dimensional Simulation of Vortex Shedding Flow in the Wake of a Yawed Circular Cylinder Near a Plane Boundary at a Reynolds Number of 500
,”
Ocean Eng.
,
87
(9
), pp.
25
39
.
27.
Thapa
,
J.
,
Zhao
,
M.
,
Cheng
,
L.
, and
Zhou
,
T.
,
2015
, “
Three-Dimensional Simulations of Flow Past Two Circular Cylinders in Side-by-Side Arrangements at Right and Oblique Attacks
,”
J. Fluids Struct.
,
55
, pp.
64
83
.
28.
Franzini
,
G. R.
,
Gonçalves
,
R. T.
,
Meneghini
,
J. R.
, and
Fujarra
,
A. L. C.
,
2013
, “
One and Two Degrees-of-Freedom Vortex-Induced Vibration Experiments With Yawed Cylinders
,”
J. Fluids Struct.
,
42
(
4
), pp.
401
420
.
29.
Zang
,
Z.
, and
Zhou
,
T.
,
2017
, “
Transverse Vortex-Induced Vibrations of a Near-Wall Cylinder Under Oblique Flows
,”
J. Fluids Struct.
,
68
, pp.
370
389
.
30.
Zhao
,
M.
,
2015
, “
The Validity of the Independence Principle Applied to the Vortex-Induced Vibration of an Inclined Cylinder in Steady Flow
,”
Appl. Ocean Res.
,
53
, pp.
155
160
.
31.
Hu
,
G.
,
Tse
,
K. T.
,
Kwok
,
K. C. S.
, and
Zhang
,
Y.
,
2015
, “
Large Eddy Simulation of Flow Around an Inclined Finite Square Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
146
, pp.
172
184
.
32.
Hu
,
G.
,
Tse
,
K. T.
,
Chen
,
Z. S.
, and
Kwok
,
K. C. S.
,
2017
, “
Particle Image Velocimetry Measurement of Flow Around an Inclined Square Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
168
, pp.
134
140
.
33.
Hu
,
G.
,
Tse
,
K. T.
, and
Kwok
,
K. C. S.
,
2015
, “
Galloping of Forward and Backward Inclined Slender Square Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
142
, pp.
232
245
.
34.
Hu
,
G.
,
Tse
,
K. T.
, and
Kwok
,
K. C. S.
,
2016
, “
Aerodynamic Mechanisms of Galloping of an Inclined Square Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
148
, pp.
6
17
.
35.
Adane
,
K. F. K.
, and
Tachie
,
M. F.
,
2010
, “
PIV Study of Laminar Wall Jets of Non-Newtonian Fluids
,”
ASME J. Fluids Eng.
,
132
(
7
), p.
071201
.
36.
Keane
,
D. J.
, and
Adrian
,
R. J. M.
,
1992
, “
Theory of Cross-Correlation of PIV Images
,”
Appl. Sci. Res.
,
49
(
3
), pp.
191
215
.
37.
Shah
,
M. K.
, and
Tachie
,
M. F.
,
2008
, “
PIV Study of Turbulent Flow in Asymmetric Converging and Diverging Channels
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011204
.
38.
Gao
,
Y. Y.
,
Wang
,
X.
,
Tan
,
D. S.
, and
Keat
,
T. S.
,
2013
, “
Particle Image Velocimetry Technique Measurements of the Near Wake Behind a Cylinder-Pair of Unequal Diameters
,”
Fluid Dyn. Res.
,
45
(
4
), p.
045504
.
39.
Ma
,
L. L.
,
Gao
,
Y. Y.
,
Guo
,
Z.
, and
Wang
,
L. Z.
,
2018
, “
Experimental Investigation on Flow Past Nine Cylinders in a Square Configuration
,”
Fluid Dyn. Res.
,
50
(
2
), p.
025504
.
40.
Peschard
,
I.
, and
Gal
,
P. L.
,
1996
, “
Coupled Wakes of Cylinders
,”
Phys. Rev. Lett.
,
77
(
15
), pp.
3122
3125
.
41.
Kumar
,
S.
,
Laughlin
,
G.
, and
Cantu
,
C.
,
2009
, “
Near-Wake Structure Behind Two Circular Cylinders in a Side-by-Side Configuration
,”
Phys. Rev. E.
,
80
(
6 Pt. 2
), p.
066307
.
42.
Kumada
,
M.
,
Hiwada
,
M.
,
Ito
,
M.
, and
Mabuchi
,
I.
,
1984
, “
Wake Interference Between Three Circular Cylinders Arranged Side-by-Side Normal to a Flow
,”
Trans. JSME
,
50
, pp.
1699
1707
(in Japanese).
43.
Pang
,
J. H.
,
Zong
,
Z.
,
Zou
,
L.
, and
Wang
,
Z.
,
2016
, “
Numerical Simulation of the Flow Around Two Side-by-Side Circular Cylinders by IVCBC Vortex Method
,”
Ocean Eng.
,
119
, pp.
86
100
.
44.
Oruç
,
V.
,
Akar
,
M. A.
,
Akilli
,
H.
, and
Sahin
,
B.
,
2013
, “
Suppression of Asymmetric Flow Behavior Downstream of Two Side-by-Side Circular Cylinders With a Splitter Plate in Shallow Water
,”
Measurement
,
46
(
1
), pp.
442
455
.
You do not currently have access to this content.