Abstract

In this paper, the hydraulic efficiency optimization calculation method of a ten-stage centrifugal pump is researched. According to the hydraulic loss model, a multi-objective optimization calculation method based on surrogate models is proposed. In order to study the highly nonlinear relationship between key design variables and centrifugal pump external characteristic values, this paper builds the quadratic response surface, the radial basis Gaussian response surface, and Kriging three surrogate models using computer fluid dynamics (CFD) simulation analysis. Two types of calculation models (hydraulic loss model and three surrogate models) combined NSGA-Π genetic algorithm are applied to optimize the key design variables and to find the optimal solution of each model. The accuracy and effectiveness of the efficiency optimization methods based on the two types of calculation models are compared and analyzed. The results show that the calculation method of hydraulic loss model based on the semitheoretical and semi-empirical formula is less time-consuming but inaccurate. In contrast, the optimization method based on surrogate models using CFD simulation is accurate. What's more, comparing the surrogate models, the results based on the complete quadratic response surface model which make the efficiency of the first stage centrifugal pump reach 77.26% are more accurate.

References

References
1.
Yang
,
J.
,
Bian
,
Z.
,
Zhong
,
C.
, and
Li
,
J.
,
2016
, “
Method for Selecting Centrifugal Pump Impeller Outlet Angle Based on Calculation of Centrifugal Pump Impeller's Hydraulic Loss
,”
J. Xihua Univ. (Nat. Sci. Ed.)
,
3
, pp.
89
92
.
2.
Gao
,
J.
,
2008
, “
Study on Optimization of Centrifugal Pump Impeller's and Volute's Parameters
,” Master of Engineering, Hebei University of Engineering, Handan, China.
3.
Nie
,
S.
,
Zhu
,
B.
,
Liao
,
S.
, and
Xu
,
E.
,
2013
, “
Optimization Design of Centrifugal Pump Based on Genetic Algorithm
,”
J. Mach. Des.
,
12
, pp.
19
22
.
4.
Kara Omar
,
A.
,
Khaldi
,
A.
, and
Ladouani
,
A.
,
2017
, “
Prediction of Centrifugal Pump Performance Using Energy Loss Analysis
,”
Aust. J. Mech. Eng.
,
15
(
3
), pp.
210
221
.10.1080/14484846.2016.1252567
5.
Wang
,
C.
,
Peng
,
H.
,
Ding
,
J.
,
Zhao
,
B.
, and
Jia
,
F.
,
2013
, “
Optimization for Vortex Pump Based on Response Surface Method
,”
Trans. Chin. Soc. Agric. Mach.
,
44
(
5
), pp.
59
65
.10.6041/j.issn.1000-1298.2013.05.012
6.
Wang
,
W.
,
Yuan
,
S.
,
Pei
,
J.
,
Zhang
,
J.
,
Yuan
,
J.
, and
Mao
,
F.
,
2015
, “
Two-Point Hydraulic Optimization of Pump Impeller Based on Kriging Model and Neighborhood Cultivation Genetic Algorithm
,”
Chin. J. Mech. Eng.
,
51
(
15
), pp.
33
38
.10.3901/JME.2015.15.033
7.
Bellary
,
S. A. I.
,
Adhav
,
R.
,
Siddique
,
M. H.
,
Chon
,
B. H.
,
Kenyery
,
F.
, and
Samad
,
A.
,
2016
, “
Application of Computational Fluid Dynamics and Surrogate-Coupled Evolutionary Computing to Enhance Centrifugal-Pump Performance
,”
Eng. Appl. Comp. Fluid Mech.
,
10
(
1
), pp.
172
182
.10.1080/19942060.2015.1128359
8.
Bellary
,
S. A. I.
,
Husain
,
A.
, and
Samad
,
A.
,
2014
, “
Effectiveness of Meta-Models for Multi-Objective Optimization of Centrifugal Impeller
,”
J. Mech. Sci. Technol.
,
28
(
12
), pp.
4947
4957
.10.1007/s12206-014-1116-0
9.
Bellary
,
S. A. I.
,
Samad
,
A.
,
Couckuyt
,
I.
, and
Dhaene
,
T.
,
2016
, “
A Comparative Study of Kriging Variants for the Optimization of a Turbomachinery System
,”
Eng. Comput.
,
32
(
1
), pp.
49
59
.10.1007/s00366-015-0398-x
10.
Heo
,
M. W.
,
Ma
,
S. B.
,
Shim
,
H. S.
, and
Kim
,
K. Y.
,
2016
, “
High-Efficiency Design Optimization of a Centrifugal Pump
,”
J. Mech. Sci. Technol.
,
30
(
9
), pp.
3917
3927
.10.1007/s12206-016-0803-4
11.
Zhou
,
L.
,
Shi
,
W.
,
Li
,
W.
, and
Agarwal
,
R.
,
2013
, “
Numerical and Experimental Study of Axial Force and Hydraulic Performance in a Deep-Well Centrifugal Pump With Different Impeller Rear Shroud Radius
,”
ASME J. Fluids Eng.
,
135
(
10
), p.
104501
.10.1115/1.4024894
12.
Fleder
,
A.
, and
Böhle
,
M.
,
2015
, “
A Systematical Study of the Influence of Blade Length, Blade Width, and Side Channel Height on the Performance of a Side Channel Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121102
.10.1115/1.4030897
13.
Mortazavi
,
F.
,
Riasi
,
A.
, and
Nourbakhsh
,
A.
,
2017
, “
Numerical Investigation of Back Vane Design and Its Impact on Pump Performance
,”
ASME J. Fluids Eng.
,
139
(
12
), p.
121104
.10.1115/1.4037281
14.
Patil
,
A.
, and
Morrison
,
G.
,
2018
, “
Affinity Law Modified to Predict the Pump Head Performance for Different Viscosities Using the Morrison Number
,”
ASME J. Fluids Eng.
,
141
(
2
), p.
021203
.10.1115/1.4041066
15.
Weme
,
D. D. O.
,
van der Schoot
,
M.
,
Kruyt
,
N.
, and
van der Zijden
,
E.
,
2018
, “
Prediction of the Effect of Impeller Trimming on the Hydraulic Performance of Low Specific-Speed Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
140
(
8
), p.
081202
.10.1115/1.4039251
16.
Tan
,
M.
,
Yuan
,
S.
, and
Liu
,
H.
,
2005
, “
Research Status and Prospect of Centrifugal Pump Performance Prediction
,”
Pump Technol.
,
3
, pp.
23
25
.http://www.cnki.com.cn/Article/CJFDTotal-SBJS200503006.htm
17.
Tan
,
M.
,
Liu
,
H.
, and
Yuan
,
S.
,
2007
, “
Calculation of Hydraulic Loss in Centrifugal Pumps
,”
J. Jiangsu Univ. (Nat. Sci. Ed.)
,
28
(
5
), pp.
405
408
.
You do not currently have access to this content.