It is a well-known fact and a much studied problematic that the performance of low-head hydraulic turbines is highly dependent on the runner–draft tube coupling. Around the optimal operating conditions, the efficiency of the turbine follows closely the performance of the draft tube that in turn depends on the velocity field exiting the runner. Hence, in order to predict correctly the performance of the draft tube using numerical simulations, the flow inside the runner must be simulated accurately. Using results from unique and detailed particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) measurements inside the runner channel of a bulb turbine, this paper presents an extensive study of the predictive capability of a widely used simulation methodology based on unsteady Reynolds-averaged Navier–Stokes equations with a k-epsilon closure model. The main objective was to identify the main parameters influencing the numerical predictions of the velocity field at the draft tube entrance in order to increase the accuracy of the simulated performance of the turbine. This paper relies on a comparison of simulations results with already published LDV measurements in the draft tube cone, interblade LDV, and stereoscopic PIV measurements within the runner. This paper presents a detailed discussion of numerical–experimental data correlation inside the runner channel and at the drat tube entrance. It shows that, contrary to widely circulated ideas, the near-wall predictions at the draft tube entrance is surprisingly good while the simulation accuracy inside the runner channels deteriorates from the leading to the trailing edges.

References

References
1.
Yang
,
W.
,
Wu
,
Y.
, and
Liu
,
S.
,
2011
, “
An Optimization Method on Runner Blades in Bulb Turbine Based on CFD Analysis
,”
Sci. China: Technol. Sci.
,
54
(
2
), pp.
338
344
.
2.
Jošt
,
D.
, and
Škerlavaj
,
A.
,
2014
, “
Efficiency Prediction for a Low Head Bulb Turbine With SAS SST and Zonal LES Turbulence Models
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
2
), pp.
1
10
.
3.
Duquesne
,
P.
,
Fraser
,
R.
,
Maciel
,
Y.
,
Aeschlimann
,
V.
, and
Deschênes
,
C.
,
2014
, “
Draft Tube Flow Phenomena Across the Bulb Turbine Hill Chart
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), pp.
1
11
.
4.
Gagnon
,
J.-M.
,
Aeschlimann
,
V.
,
Houde
,
S.
,
Flemming
,
F.
,
Coulson
,
S.
, and
Deschênes
,
C.
,
2012
, “
Experimental Investigation of Draft Tube Inlet Velocity Field of a Propeller Turbine
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101102
.
5.
Houde
,
S.
,
Iliescu
,
M. S.
,
Fraser
,
R.
,
Lemay
,
S.
,
Ciocan
,
G.
, and
Deschênes
,
C.
,
2011
, “
Experimental and Numerical Analysis of the Cavitating Part Load Vortex Dynamics of Low-Head Hydraulic Turbines
,”
ASME-JSME-KSME Joint Fluids Engineering Conference
, Hamamatsu, Japan, July 24–29, pp. 171–182.
6.
Jonsson
,
P. P.
,
Mulu
,
B.
, and
Cervantes
,
M.
,
2012
, “
Experimental Investigation of a Kaplan Draft Tube—Part II: Off-Design Conditions
,”
Appl. Energy
,
94
, pp.
71
83
.
7.
Duquesne
,
P.
,
Maciel
,
Y.
, and
Deschênes
,
C.
,
2015
, “
Investigation of Flow Separation in a Diffuser of a Bulb Turbine
,”
ASME J. Fluids Eng.
,
138
(
1
), pp.
1
9
.
8.
Duquesne
,
P.
,
Maciel
,
Y.
, and
Deschênes
,
C.
,
2015
, “
Unsteady Flow Separation in a Turbine Diffuser
,”
Exp. Fluids
,
56
(
8
), pp.
1
15
.
9.
Štefan
,
D.
,
Rudolf
,
P.
,
Skoták
,
A.
, and
Motyčák
,
L.
,
2012
, “
Energy Transformation and Flow Topology in an Elbow Draft Tube
,”
Appl. Comput. Mech.
,
6
(
1
), pp.
93
106
.https://www.kme.zcu.cz/acm/acm/article/view/173
10.
Motyčak
,
L.
,
Skoták
,
A.
, and
Obrovský
,
J.
,
2010
, “
Analysis of the Kaplan Turbine Draft Tube Effect
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
(
1
), pp.
1
9
.https://iopscience.iop.org/article/10.1088/1755-1315/12/1/012038
11.
Arpe
,
J.
, and
Avellan
,
F.
,
2002
, “
Pressure Wall Measurements in the Whole Draft Tube: Steady and Unsteady Analysis
,” 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne, Switzerland, Sept. 9–12, pp.
593
602
.
12.
Mauri
,
S.
,
Kueny
,
J. L.
, and
Avellan
,
F.
,
2005
, “
Werlé-Legendre Separation in a Hydraulic Machine Draft Tube
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
976
980
.
13.
Susan-Resiga
,
R.
,
Ciocan
,
G. D.
,
Anton
,
I.
, and
Avellan
,
F.
,
2006
, “
Analysis of the Swirling Flow Downstream a Francis Turbine Runner
,”
ASME J. Fluids Eng.
,
128
(
1
), pp.
177
189
.
14.
Vu
,
T. C.
,
Koller
,
M.
,
Gauthier
,
M.
, and
Deschênes
,
C.
,
2010
, “
Flow Simulation and Efficiency Hill Chart Prediction for a Propeller Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
, p.
012040
.
15.
Muntean
,
S.
,
Susan-Resiga
,
R.
,
Göde
,
E.
,
Baya
,
A.
,
Terzi
,
R.
, and
Tîrşi
,
C.
,
2016
, “
Scenarios for Refurbishment of a Hydropower Plant Equipped With Francis Turbines
,”
Renewable Energy Environ. Sustainability
,
1
, pp.
1
6
.
16.
Avellan
,
F.
,
2000
, “
Flow Investigation in a Francis Draft Tube: The FLINDT Project
,”
20th IAHR Symposium on Hydraulic Machinery and Systems
, Charlotte, NC, Aug. 6–9, pp.
1
18
.https://www.researchgate.net/publication/37424288_Flow_Investigation_in_a_Francis_Draft_Tube_the_Flindt_Project
17.
Ciocan
,
G. D.
,
Iliescu
,
M. S.
,
Vu
,
T. C.
,
Nennemann
,
B.
, and
Avellan
,
F.
,
2007
, “
Experimental Study and Numerical Simulation of the Flindt Draft Tube Rotating Vortex
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
146
158
.
18.
Tridon
,
S.
,
Barre
,
S.
,
Ciocan
,
G.
,
Ségoufin
,
C.
, and
Leroy
,
P.
,
2012
, “
Discharge Imbalance Mitigation in Francis Turbine Draft-Tube Bays
,”
ASME J. Fluids Eng.
,
134
(
4
), p.
041102
.
19.
Mulu
,
B. G.
,
Jonsson
,
P. P.
, and
Cervantes
,
M. J.
,
2012
, “
Experimental Investigation of a Kaplan Draft Tube—Part I: Best Efficiency Point
,”
Appl. Energy
,
93
, pp.
695
706
.
20.
Štefan
,
D.
, and
Rudolf
,
P.
,
2015
, “
Proper Orthogonal Decomposition of Pressure Fields in a Draft Tube Cone of the Francis (Tokke) Turbine Model
,”
J. Phys.: Conf. Ser.
,
579
(
1
), pp.
1
14
.https://iopscience.iop.org/article/10.1088/1742-6596/579/1/012002
21.
Trivedi
,
C.
,
Cervantes
,
M. J.
, and
Dahlhaug
,
O. G.
,
2016
, “
Experimental and Numerical Studies of a High-Head Francis Turbine: A Review of the Francis-99 Test Case
,”
Energies
,
9
(
2
), pp.
1
24
.
22.
Ko
,
P.
, and
Kurosawa
,
S.
,
2014
, “
Numerical Simulation of Turbulence Flow in a Kaplan Turbine-Evaluation on Turbine Performance Prediction Accuracy
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
2
), pp.
1
10
.https://iopscience.iop.org/article/10.1088/1755-1315/22/2/022006
23.
Mulu
,
B. G.
,
Cervantes
,
M.
,
Devals
,
C.
,
Vu
,
T. C.
, and
Guibault
,
F.
,
2015
, “
Simulation-Based Investigation of Unsteady Flow in Near-Hub Region of a Kaplan Turbine With Experimental Comparison
,”
Eng. Appl. Comput. Fluid Mech.
,
9
(
1
), pp.
139
156
.
24.
Taheri
,
A.
,
2015
, “
Detached Eddy Simulation of Unsteady Turbulent Flows in the Draft Tube of a Bulb Turbine
,” Ph.D. thesis, Laval University, Québec City, QC, Canada.
25.
Houde
,
S.
,
Carrier
,
A.
,
Buron
,
J. D.
, and
Deschênes
,
C.
,
2014
, “
Numerical Analysis of a Measured Efficiency Hysteresis on a Bulb Turbine Model
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
2
), pp.
1
9
.https://iopscience.iop.org/article/10.1088/1755-1315/22/2/022009
26.
Beaubien
,
C. A.
,
2013
, “
Numerical Simulations of Turbulent Flow in a Hydraulic Turbine Draft Tube
,” M.S. thesis, Laval University, Québec City, QC, Canada (in French).
27.
Lemay
,
S.
,
Fraser
,
R.
,
Ciocan
,
G. D.
,
Aeschlimann
,
V.
, and
Deschênes
,
C.
,
2014
, “
Flow Field Study in a Bulb Turbine Runner Using LDV and Endoscopic S-PIV Measurements
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
2
), pp.
1
11
.https://iopscience.iop.org/article/10.1088/1755-1315/22/2/022015/meta
28.
Lemay
,
S.
,
Aeschlimann
,
V.
,
Fraser
,
R.
,
Ciocan
,
G. D.
, and
Deschênes
,
C.
,
2015
, “
Velocity Field Investigation Inside a Bulb Turbine Runner Using Endoscopic PIV Measurements
,”
Exp. Fluids
,
56
(
120
), pp.
1
22
.
29.
Vuillemard
,
J.
,
Aeschlimann
,
V.
,
Fraser
,
R.
,
Lemay
,
S.
, and
Deschênes
,
C.
,
2014
, “
Experimental Investigation of the Draft Tube Inlet Flow of a Bulb Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(3), pp.
1
11
.https://iopscience.iop.org/article/10.1088/1755-1315/22/3/032010
30.
Vuillemard
,
J.
,
2016
, “
Experimental Study of the Flow in the Bulb Turbine Draft Tube Inlet
,” M.S. thesis, Laval University, Québec, Canada [“Étude expérimentale de l'écoulement en entrée d'aspirateur d'une turbine bulbe,” Mémoire de maîtrise, Université Laval, Québec, Canada (in French)].
31.
Deschênes
,
C.
,
Ciocan
,
G. D.
,
Henau
,
V. D.
,
Flemming
,
F.
,
Huang
,
J.
,
Koller
,
M.
,
Naime
,
F. A.
,
Page
,
M.
,
Qian
,
R.
, and
Vu
,
T.
,
2010
, “
General Overview of the AxialT Project: A Partnership for Low Head Turbine Developments
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
(
1
), pp.
1
10
.https://iopscience.iop.org/article/10.1088/1755-1315/12/1/012043
32.
Tridon
,
S.
,
Barre
,
S.
,
Ciocan
,
G. D.
,
Leroy
,
P.
, and
Segoufin
,
C.
,
2010
, “
Experimental Investigation of Draft Tube Flow Instability
,”
25th IAHR Symposium on Hydraulic Machinery and Systems
, Timisoara, Romania, Sept. 20–24.https://iopscience.iop.org/article/10.1088/1755-1315/12/1/012044
33.
Guénette
,
V.
,
Houde
,
S.
,
Ciocan
,
G. D.
,
Dumas
,
G.
,
Huang
,
J.
, and
Deschênes
,
C.
,
2012
, “
Numerical Prediction of a Bulb Turbine Performance Hill Chart Through RANS Simulations
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
3
), pp.
1
8
.https://iopscience.iop.org/article/10.1088/1755-1315/15/3/032007/pdf
34.
Vu
,
T. C.
,
Gauthier
,
M.
,
Nennemann
,
B.
,
Wallimann
,
H.
, and
Deschênes
,
C.
,
2014
, “
CFD Analysis of a Bulb Turbine and Validation With Measurements From the BulbT Project
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
2
), pp.
1
10
.https://iopscience.iop.org/article/10.1088/1755-1315/22/2/022008/meta
35.
Buron
,
J. D.
,
Houde
,
S.
, and
Deschênes
,
C.
,
2018
, “
Time-Resolved Stereoscopic PIV Measurements in the Conical Diffuser of a Model Bulb Turbin
,”
29th IAHR Symposium on Hydraulic Machinery and Systems
, Kyoto, Japan, Sept. 16–21, pp.
1
11
.
36.
Duprat
,
C.
,
Balarac
,
G.
,
Métais
,
O.
,
Tridon
,
S.
,
Barre
,
S.
,
Ciocan
,
G. D.
,
Laverne
,
T.
, and
Tomas
,
L.
,
2009
, “
Large-Eddy Simulation of Draft Tube Flow and Validation From Experimental Measurements
,”
Third IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
, Brno, Czech Republic, Oct. 14–16, pp.
123
132
.
37.
Longchamp
,
Q.
,
2014
, “
Experimental and Numerical Analysis of the Flow in the Inlet Channel of a Bulb Turbine
,” M.S. thesis, Laval University, Québec City, QC, Canada (in French).
38.
Božić
,
I.
, and
Benišek
,
M.
,
2016
, “
An Improved Formula for Determination of Secondary Energy Losses in the Runner of Kaplan Turbine
,”
Renewable Energy
,
94
, pp.
537
546
.
39.
Taraud
,
J.-P.
,
2014
, “
Recovery of Complex Geometries and Applications for the Study of a Bulb Type Water Turbine
,” M.S. thesis, Laval University, Quebec City, QC, Canada (in French).
40.
Roache
,
P. J.
,
Ghia
,
K. N.
, and
White
,
F. M.
,
1986
, “
Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
,
108
(
1
), p.
1
.
41.
Roache
,
P. J.
,
2003
, “
Conservatism of the GCI in Finite Volume Computations on Steady State Fluid Flow and Heat Transfer
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
731
739
.
42.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME. J. Fluids Eng.
,
130
(
7
), p.
078001
.
43.
Wilhelm
,
S.
,
Balarac
,
G.
,
Métais
,
O.
, and
Ségoufin
,
C.
,
2016
, “
Analysis of Head Losses in a Turbine Draft Tube by Means of 3D Unsteady Simulations
,”
Flow, Turbul. Combust.
,
97
(
4
), pp.
1255
1280
.
You do not currently have access to this content.