When an annular bed of solid particles that surrounds a cylindrical high-energy explosive core gets radially dispersed after detonation, the expanding front of particles undergoes instabilities. One of the possible causes of the instabilities is an inhomogeneous initial distribution of particles. This study explores this possibility by introducing two-dimensional perturbations to the initial distribution of particles within the annular bed and quantifying the growth of these perturbations over time using two-dimensional simulations. The initial perturbations are in the form of superposition of up to three sinusoidal azimuthal modal variations in the initial particle volume fraction (PVF, ratio of particle to cell volume). These are observed to impact the particle distribution at later times through a channeling instability whose effects are: (i) to decrease the velocity in regions of larger particle volume (PV) and (ii) to facilitate circumferential particle migration into the slow moving high PV sectors. These departures from axisymmetry are quantified by introducing two metrics. The effect of varying the number of azimuthal modes contained in the initial PVF perturbation, along with their amplitudes, wavelengths, and relative phases is investigated. The proposed metrics do not vary substantially with the relative phases; however, there is a strong variation in the metrics due to changes in the wavenumber. Unimodal perturbations were found to amplify both metrics the most.

References

References
1.
Zhang
,
F.
,
Frost
,
D.
,
Thibault
,
P.
, and
Murray
,
S.
,
2001
, “
Explosive Dispersal of Solid Particles
,”
Shock Waves
,
10
(
6
), pp.
431
443
.
2.
Frost
,
D. L.
,
Grégoire
,
Y.
,
Petel
,
O.
,
Goroshin
,
S.
, and
Zhang
,
F.
,
2012
, “
Particle Jet Formation During Explosive Dispersal of Solid Particles
,”
Phys. Fluids
,
24
(
9
), p.
091109
.
3.
Ripley
,
R.
,
Donahue
,
L.
, and
Zhang
,
F.
,
2012
, “
Jetting Instabilities of Particles From Explosive Dispersal
,”
AIP Conf. Proc.
,
1426
(1), pp.
1615
1618
.https://doi.org/10.1063/1.3686594
4.
McFarland
,
J. A.
,
Black
,
W. J.
,
Dahal
,
J.
, and
Morgan
,
B. E.
,
2016
, “
Computational Study of the Shock Driven Instability of a Multiphase Particle-Gas System
,”
Phys. Fluids
,
28
(
2
), p.
024105
.
5.
Frost
,
D. L.
,
Loiseau
,
J.
,
Marr
,
B. J.
, and
Goroshin
,
S.
,
2017
, “
Particle Segregation During Explosive Dispersal of Binary Particle Mixtures
,”
AIP Conf. Proc.
,
1793
, p.
120020
.
6.
Annamalai
,
S.
,
Rollin
,
B.
,
Ouellet
,
F.
,
Neal
,
C.
,
Jackson
,
T. L.
, and
Balachandar
,
S.
,
2016
, “
Effects of Initial Perturbations in the Early Moments of an Explosive Dispersal of Particles
,”
ASME J. Fluids Eng.
,
138
(
7
), p.
070903
.
7.
Ouellet
,
F.
,
Annamalai
,
S.
, and
Rollin
,
B.
,
2017
, “
Effect of a Bimodal Initial Particle Volume Fraction Perturbation in an Explosive Dispersal of Particles
,”
AIP Conf. Proc.
,
1793
, p.
150011
.
8.
Black
,
W.
,
Denissen
,
N.
, and
McFarland
,
J.
,
2018
, “
Particle Force Model Effects in a Shock-Driven Multiphase Instability
,”
Shock Waves
,
28
(
3
), pp.
463
472
.
9.
Taylor
,
G.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes
,”
Proc. R. Soc. London, Ser. A
,
201
(1065), pp.
192
196
.https://doi.org/10.1098/rspa.1950.0052
10.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
(
2
), pp.
297
319
.
11.
Meshkov
,
E.
,
1972
, “
Instability of the Interface of Two Gases Accelerated by a Shock Wave
,”
Fluid Dyn.
,
4
(
5
), pp.
101
104
.
12.
Schilling
,
O.
,
Livescu
,
D.
,
Prestridge
,
K. P.
, and
Ramaprabhu
,
P.
,
2016
, “
The 14th International Workshop on the Physics of Compressible Turbulent Mixing
,”
ASME J. Fluids Eng.
,
138
(
7
), p.
070301
.
13.
McFarland
,
J.
,
Reilly
,
D.
,
Creel
,
S.
,
McDonald
,
C.
,
Finn
,
T.
, and
Ranjan
,
D.
,
2014
, “
Experimental Investigation of the Inclined Interface Richtmyer–Meshkov Instability Before and After Reshock
,”
Exp. Fluids
,
55
(
1
), p.
1640
.
14.
Vorobieff
,
P.
,
Anderson
,
M.
,
Conroy
,
J.
,
White
,
R.
,
Truman
,
C. R.
, and
Kumar
,
S.
,
2011
, “
Vortex Formation in a Shock-Accelerated Gas Induced by Particle Seeding
,”
Phys. Rev. Lett.
,
106
(
18
), p.
184503
.
15.
Middlebrooks
,
J.
,
Black
,
W.
,
Allen
,
R.
, and
McFarland
,
J.
,
2018
, “
Experimental Technique for the Measurement of Velocity and Droplet Lag Distance in a Shock Accelerated Multiphase System
,”
Bull. Am. Phys. Soc.
,
63
(
epub
).
16.
Sharp
,
D. H.
,
1984
, “
An Overview of Rayleigh–Taylor Instability
,”
Physica D
,
12
(
1–3
), pp.
3
18
.
17.
Mankbadi
,
M. R.
, and
Balachandar
,
S.
,
2012
, “
Compressible Inviscid Instability of Rapidly Expanding Spherical Material Interfaces
,”
Phys. Fluids
,
24
(
3
), p.
034106
.
18.
Mankbadi
,
M.
, and
Balachandar
,
S.
,
2013
, “
Viscous Effects on the Non-Classical Rayleigh–Taylor Instability of Spherical Material Interfaces
,”
Shock Waves
,
23
(
6
), pp.
603
617
.
19.
Crittenden
,
P.
,
2018
, “
Numerical and Theoretical Instability Analysis of Material Interfaces in Compressible, Radial Flow
,” Ph.D. thesis, University of Florida, Gainesville, FL.
20.
Epstein
,
R.
,
2004
, “
On the Bell–Plesset Effects: The Effects of Uniform Compression and Geometrical Convergence on the Classical Rayleigh–Taylor Instability
,”
Phys. Plasmas
,
11
(
11
), pp.
5114
5124
.
21.
Ukai
,
S.
,
Balakrishnan
,
K.
, and
Menon
,
S.
,
2011
, “
Growth Rate Predictions of Single-and Multi-Mode Richtmyer–Meshkov Instability With Reshock
,”
Shock Waves
,
21
(
6
), p.
533
.
22.
Schilling
,
O.
,
Latini
,
M.
, and
Don
,
W. S.
,
2007
, “
Physics of Reshock and Mixing in Single-Mode Richtmyer-Meshkov Instability
,”
Phys. Rev. E
,
76
(
2 Pt 2
), p.
026319
.
23.
Schilling
,
O.
, and
Latini
,
M.
,
2010
, “
High-Order WENO Simulations of Three-Dimensional Reshocked Richtmyer–Meshkov Instability to Late Times: Dynamics, Dependence on Initial Conditions, and Comparisons to Experimental Data
,”
Acta Math. Sci.
,
30
(
2
), pp.
595
620
.
24.
Balakrishnan
,
K.
,
2014
, “
Explosion-Driven Rayleigh–Taylor Instability in Gas-Particle Mixtures
,”
Phys. Fluids
,
26
(
4
), p.
043303
.
25.
Ling
,
Y.
,
Balachandar
,
S.
, and
Parmar
,
M.
,
2016
, “
Inter-Phase Heat Transfer and Energy Coupling in Turbulent Dispersed Multiphase Flows
,”
Phys. Fluids
,
28
(
3
), p.
033304
.
26.
Liou
,
M.-S.
,
2006
, “
A Sequel to AUSM—Part II: AUSM+-Up for All Speeds
,”
J. Comput. Phys.
,
214
(
1
), pp.
137
170
.
27.
Haselbacher
,
A.
,
2005
, “
A WENO Reconstruction Algorithm for Unstructured Grids Based on Explicit Stencil Construction
,”
AIAA
Paper No. 2005-0879.
28.
Ling
,
Y.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2009
, “
Transient Phenomena in One-Dimensional Compressible Gas-Particle Flows
,”
Shock Waves
,
19
(
1
), pp.
67
81
.
29.
Ling
,
Y.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2011
, “
Importance of Unsteady Contributions to Force and Heating for Particles in Compressible Flows—Part 1: Modeling and Analysis for Shock-Particle Interaction
,”
Int. J. Multiphase Flow
,
37
(
9
), pp.
1026
1044
.
30.
Ling
,
Y.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2011
, “
Importance of Unsteady Contributions to Force and Heating for Particles in Compressible Flows—Part 2: Application to Particle Dispersal by Blast Waves
,”
Int. J. Multiphase Flow
,
37
(
9
), pp.
1013
1025
.
31.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2010
, “
Improved Drag Correlation for Spheres and Application to Shock-Tube Experiments
,”
AIAA J.
,
48
(
6
), pp.
1273
1276
.
32.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2008
, “
On the Unsteady Inviscid Force on Cylinders and Spheres in Subcritical Compressible Flow
,”
Philos. Trans. R. Soc., A
,
366
(
1873
), pp.
2161
2175
.
33.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2011
, “
Generalized Basset–Boussinesq–Oseen Equation for Unsteady Forces on a Sphere in a Compressible Flow
,”
Phys. Rev. Lett.
,
106
(
8
), p.
084501
.
34.
Clift
,
R.
, and
Gauvin
,
W.
,
1970
, “
The Motion of Particles in Turbulent Gas Streams
,”
Proc. Chemeca
,
1
, pp.
14
28
.
35.
Sangani
,
A. S.
,
Zhang
,
D.
, and
Prosperetti
,
A.
,
1991
, “
The Added Mass, Basset, and Viscous Drag Coefficients in Nondilute Bubbly Liquids Undergoing Small-Amplitude Oscillatory Motion
,”
Phys. Fluids A
,
3
(
12
), pp.
2955
2970
.
36.
Ling
,
Y.
,
Wagner
,
J.
,
Beresh
,
S.
,
Kearney
,
S.
, and
Balachandar
,
S.
,
2012
, “
Interaction of a Planar Shock Wave With a Dense Particle Curtain: Modeling and Experiments
,”
Phys. Fluids
,
24
(
11
), p.
113301
.
37.
Patankar
,
N.
, and
Joseph
,
D.
,
2001
, “
Modeling and Numerical Simulation of Particulate Flows by the Eulerian–Lagrangian Approach
,”
Int. J. Multiphase Flow
,
27
(
10
), pp.
1659
1684
.
38.
Harris
,
S.
, and
Crighton
,
D.
,
1994
, “
Solitons, Solitary Waves, and Voidage Disturbances in Gas-Fluidized Beds
,”
J. Fluid Mech.
,
266
(
1
), pp.
243
276
.
39.
Snider
,
D.
,
O'rourke
,
P.
, and
Andrews
,
M.
,
1998
, “
Sediment Flow in Inclined Vessels Calculated Using a Multiphase Particle-in-Cell Model for Dense Particle Flows
,”
Int. J. Multiphase Flow
,
24
(
8
), pp.
1359
1382
.
40.
Balakrishnan
,
K.
,
2010
, “
On the High Fidelity Simulation of Chemical Explosions and Their Interaction With Solid Particle Clouds
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
41.
Balakrishnan
,
K.
, and
Menon
,
S.
,
2011
, “
Characterization of the Mixing Layer Resulting From the Detonation of Heterogeneous Explosive Charges
,”
Flow, Turbul. Combust.
,
87
(
4
), pp.
639
671
.
42.
Dobrat
,
B.
, and
Crawford
,
P.
,
1985
,
Handbook, LLNL Explosives
,
Lawrence Livermore National Laboratory
, Livermore, CA.
43.
Zhou
,
Y.
,
2017
, “
Rayleigh–Taylor and Richtmyer–Meshkov Instability Induced Flow, Turbulence, and Mixing I
,”
Phys. Rep.
,
720–721
, pp.
1
136
.
44.
Zhou
,
Y.
,
2017
, “
Rayleigh–Taylor and Richtmyer–Meshkov Instability Induced Flow, Turbulence, and Mixing II
,”
Phys. Rep.
,
723
, pp.
1
160
.
45.
Mankbadi
,
M. R.
, and
Balachandar
,
S.
,
2014
, “
Multiphase Effects on Spherical Rayleigh–Taylor Interfacial Instability
,”
Phys. Fluids
,
26
(
2
), p.
023301
.
46.
Annamalai
,
S.
,
Parmar
,
M. K.
,
Ling
,
Y.
, and
Balachandar
,
S.
,
2014
, “
Nonlinear Rayleigh–Taylor Instability of a Cylindrical Interface in Explosion Flows
,”
ASME J. Fluids Eng.
,
136
(
6
), p.
060910
.
47.
Bokkers
,
G.
,
van Sint Annaland
,
M.
, and
Kuipers
,
J.
,
2004
, “
Mixing and Segregation in a Bidisperse Gas–Solid Fluidised Bed: A Numerical and Experimental Study
,”
Powder Technol.
,
140
(
3
), pp.
176
186
.
48.
El-Kaissy
,
M.
, and
Homsy
,
G.
,
1976
, “
Instability Waves and the Origin of Bubbles in Fluidized Beds—Part 1: Experiments
,”
Int. J. Multiphase Flow
,
2
(
4
), pp.
379
395
.
49.
Homsy
,
G.
,
El-Kaissy
,
M.
, and
Didwinia
,
A.
,
1980
, “
Instability Waves and the Origin of Bubbles in Fluidized Beds—II Comparison With Theory
,”
Int. J. Multiphase Flow
,
6
(
4
), pp.
305
318
.
50.
Cagnoli
,
B.
,
Barmin
,
A.
,
Melnik
,
O.
, and
Sparks
,
R.
,
2002
, “
Depressurization of Fine Powders in a Shock Tube and Dynamics of Fragmented Magma in Volcanic Conduits
,”
Earth Planet. Sci. Lett.
,
204
(
1–2
), pp.
101
113
.
51.
Zwick
,
D.
,
2019
, “
Scalable Highly-Resolved Euler-Lagrange Multiphase Flow Simulation With Applications to Shock Tubes
,” Ph.D. thesis, University of Florida, Gainesville, FL.
52.
Fernández-Godino
,
M. G.
,
Dubreuil
,
S.
,
Bartoli
,
N.
,
Gogu
,
C.
,
Balachandar
,
S.
, and
Haftka
,
R. T.
,
2019
, “
Linear Regression Based Multi-Fidelity Surrogate for Disturbance Amplification in Multi-Phase Explosion
,”
Structural and Multidisciplinary Optimization
, Gainesville, FL.
You do not currently have access to this content.