Pressure flow generally exists in water conservancy projects and pipelines. The flow boundary of the contraction section faces a potential risk of cavitation erosion under high velocity. However, there is a lack of effective methods to suppress cavitation in engineering practices with pressure flow, posing a challenge to the operational safety of discharge structures and pipeline devices. The purpose of this paper was to realize the application of air entrainment in a plug-type contraction section of pressure flow. It was found that a single air vent and a low air flow rate could achieve complete vena contracta aeration. The pressure profiles of the vena contracta were investigated, and the results showed that the pressure distribution allowed the entrained air to diffuse laterally and convectively. Finally, we proposed a fitting algorithm to predict the air concentration in the vena contracta. These conclusions are of great significance for improving the safety and cavitation resistance of the contraction section of pressure flow.

References

References
1.
Russell
,
S. O.
, and
Ball
,
J. W.
,
1967
, “
Sudden-Enlargement Energy Dissipator for Mica Dam
,”
J. Hydraul. Div.
,
93
(4), pp.
41
56
.https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0014619
2.
Lin
,
X. S.
, and
Shen
,
F. S.
,
2003
,
Research and Practice of Multi-Stage Orifice Spill Tunnel
,
China Water Power Press
,
Beijing, China
(in Chinese).
3.
Li
,
Y.
,
Xu
,
W. L.
,
Zhang
,
Y. L.
,
Zhang
,
J. W.
,
Chen
,
C. Q.
, and
A
,
R.
,
2013
, “
Cavitation Bubbles Collapse Characteristics Behind a Convex Body
,”
J. Hydrodyn. B.
,
25
(
6
), pp.
886
894
.
4.
Nemitallah
,
M. A.
,
Ben-Mansour
,
R.
,
Habib
,
M. A.
,
Ahmed
,
W. H.
,
Toor
,
I. H.
,
Gasem
,
Z. M.
, and
Badr
,
H. M.
,
2014
, “
Solid Particle Erosion Downstream of an Orifice
,”
ASME J. Fluids Eng.
,
137
(
2
), p.
021302
.
5.
Tian
,
Z.
,
Xu
,
W. L.
,
Wang
,
W.
, and
Liu
,
S. J.
,
2009
, “
Hydraulic Characteristics of Plug Energy Dissipater in Flood Discharge Tunnel
,”
J. Hydrodyn. B.
,
21
(
6
), pp.
799
806
.
6.
Kowalski
,
K.
,
Pollak
,
S.
,
Skoda
,
R.
, and
Hussong
,
J.
,
2018
, “
Experimental Study on Cavitation-Induced Air Release in Orifice Flows
,”
ASME J. Fluids Eng.
,
140
(
6
), p.
061201
.
7.
Freudigmann
,
H.
,
Dörr
,
A.
,
Iben
,
U.
, and
Pelz
,
P. F.
,
2017
, “
Modeling of Cavitation-Induced Air Release Phenomena in Micro-Orifice Flows
,”
ASME J. Fluids Eng.
,
139
(
11
), p.
111301
.
8.
Malavasi
,
S.
, and
Messa
,
G. V.
,
2011
, “
Dissipation and Cavitation Characteristics of Single-Hole Orifices
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051302
.
9.
Jin
,
Z. J.
,
Gao
,
Z. X.
,
Qian
,
J. Y.
,
Wu
,
Z.
, and
Sunden
,
B.
,
2017
, “
A Parametric Study of Hydrodynamic Cavitation Inside Globe Valves
,”
ASME J. Fluids Eng.
,
140
(
3
), p.
031208
.
10.
Tullis
,
J. P.
,
1989
,
Hydraulics of Pipelines: Pumps, Valves, Cavitation, Transients
,
Wiley
,
New York
.
11.
Peterka
,
A. J.
,
1953
, “
The Effect of Entrained Air on Cavitation Pitting
,”
Fifth IAHR Congress
, Minneapolis, MN, Sept. 1–4, pp.
507
518.
12.
Rasmussen
,
R.
,
1956
, “
Some Experiments on Cavitation Erosion in Water Mixed With Air
,”
Cavitation Hydrodyn.
,
20
, pp.
1
25
.
13.
Arndt
,
R. E. A.
,
Ellis
,
C. R.
, and
Paul
,
S.
,
1995
, “
Preliminary Investigation of the Use of Air Injection to Mitigate Cavitation Erosion
,”
ASME J. Fluids Eng.
,
117
(
3
), pp.
498
504
.
14.
Xu
,
W. L.
,
Luo
,
S. J.
,
Zheng
,
Q. W.
, and
Luo
,
J.
,
2015
, “
Experimental Study on Pressure and Aeration Characteristics in Stepped Chute Flows
,”
Sci. China Technol. Sci.
,
58
(
4
), pp.
720
726
.
15.
Bhosekar
,
V. V.
,
Jothiprakash
,
V.
, and
Deolalikar
,
P. B.
,
2012
, “
Orifice Spillway Aerator: Hydraulic Design
,”
J. Hydraul. Eng.
,
138
(
6
), pp.
563
572
.
16.
Jothiprakash
,
V.
,
Bhosekar
,
V. V.
, and
Deolalikar
,
P. B.
,
2015
, “
Flow Characteristics of Orifice Spillway Aerator: Numerical Model Studies
,”
ISH J. Hydraul. Eng.
,
21
(
2
), pp.
216
230
.
17.
Nikseresht
,
A. H.
,
Talebbeydokhti
,
N.
, and
Khorshidi
,
H.
,
2012
, “
Three-Dimensional Numerical Modeling of Cavitation and Aeration System in Dam Outlets
,”
ASME J. Fluids Eng.
,
134
(
9
), p.
091302
.
18.
Chanson
,
H.
,
2013
, “
Hydraulics of Aerated Flows: Qui Pro Quo?
,”
J. Hydraul. Res.
,
51
(
3
), pp.
223
243
.
19.
Yin
,
Z. G.
,
Cao
,
X. W.
,
Zhang
,
J. X.
, and
Shi
,
H. D.
,
2010
, “
Numerical Simulation of the Plug Discharge Under Aerated Condition
,”
Ninth International Conference on Hydrodynamics
, Shanghai, China, Oct. 11–15, pp.
623
627
.
20.
Mumford
,
B. L.
,
1985
, “
Cavitation Limits and the Effect of Aeration on Cone Valves
,” Master dissertation, Utah State University, Logan, UT.
21.
Davis
,
R. T.
,
1986
, “
Aerating Butterfly Valves to Suppress Cavitation
,” Master dissertation, Utah State University, Logan, UT.
22.
Chen
,
I. Y.
,
Tseng
,
C. Y.
,
Lin
,
Y. T.
, and
Wang
,
C. C.
,
2009
, “
Two-Phase Flow Pressure Change Subject to Sudden Contraction in Small Rectangular Channels
,”
Int. J. Multiphase Flow
,
35
(
3
), pp.
297
306
.
23.
Roul
,
M. K.
, and
Dash
,
S. K.
,
2011
, “
Two-Phase Pressure Drop Caused by Sudden Flow Area Contraction/Expansion in Small Circular Pipes
,”
Int. J. Numer. Methods Fluids
,
66
(
11
), pp.
1420
1446
.
24.
Dong
,
Z. Y.
,
Wu
,
C. G.
,
Yang
,
Y. Q.
, and
Zhang
,
Y.
,
1994
, “
Characteristics of Concentration Diffusion of Submerged Aerated Jets
,”
J. Chengdu Univ. Sci. Technol.
,
4
, pp.
31
38
(in Chinese).
You do not currently have access to this content.