High cavitating or supercavitating flows in fuel injector systems are crucial since they improve the mixing and the fuel atomization into combustion chambers, decreasing both fuel consumption and pollutant emissions. However, there is a lack of information regarding the required time to obtain high cavitating flows at the nozzle outlet, from the start of the injection pulse. In this work, a new method to quantify the time to get supercavitating flows at the nozzle outlet is developed. In particular, the delay in the inception of a supercavitating flow through a micronozzle is numerically analyzed for different pressure drops in a well-studied benchmark for fuel injectors. The three-dimensional simulations show that a delay higher than 100 μs is necessary for moderate pressure drops. Nevertheless, the delay tends to decay by rising amplitudes of the pressure pulse, reaching a saturation value of around 65 μs.

References

References
1.
Baumgarten
,
C.
,
2006
,
Mixture Formation in Internal Combustion Engines
,
Springer
, Berlin.
2.
Ji
,
B.
,
Luo
,
X.
,
Peng
,
X.
,
Wu
,
Y.
, and
Xu
,
H.
,
2012
, “
Numerical Analysis of Cavitation Evolution and Excited Pressure Fluctuation Around a Propeller in Non-Uniform Wake
,”
Int. J. Multiphase Flow
,
43
, pp.
13
21
.
3.
Hutli
,
E.
,
Nedeljkovic
,
M.
,
Radovic
,
N.
, and
Bonyár
,
A.
,
2016
, “
The Relation Between the High Speed Submerged Cavitating Jet Behaviour and the Cavitation Erosion Process
,”
Int. J. Multiphase Flow
,
83
, pp.
27
38
.
4.
Zhang
,
L.
,
He
,
Z.
,
Guan
,
W.
,
Wang
,
Q.
, and
Som
,
S.
,
2018
, “
Simulations on the Cavitating Flow and Corresponding Risk of Erosion in Diesel Injector Nozzles With Double Array Holes
,”
Int. J. Heat Mass Transfer
,
124
, pp.
900
811
.
5.
Yu
,
H.
,
Goldsworthy
,
L.
,
Brandner
,
P.
, and
Garaniya
,
V.
,
2017
, “
Development of a Compressible Multiphase Cavitation Approach for Diesel Spray Modelling
,”
Appl. Math. Modell.
,
45
, pp.
705
727
.
6.
Roth
,
H.
,
Gavaises
,
M.
, and
Arcoumanis
,
C.
,
2002
, “
Cavitation Initiation, Its Development and Link With Flow Turbulence in Diesel Injector Nozzles
,”
SAE Trans. J. Engines
,
3
, pp.
561
580
.https://www.jstor.org/stable/44743085
7.
Gohel
,
R.
,
Joshi
,
N.
, and
Patel
,
H.
,
2016
, “
A Review on Cavitation in Fuel Injector Nozzle
,”
Int. J. Sci. Technol. Eng.
,
3
(
6
), pp.
158
162
.http://www.ijste.org/articles/IJSTEV3I6104.pdf
8.
Devganiya
,
K.
, and
Bambhania
,
M.
,
2016
, “
Investigation on Cavitation in Diesel Engine Fuel Injector Nozzle: Review
,”
International Conference on Futuristic Trends in Engineering, Science, Pharmacy and Management
, Vadodara, India, Dec.
9.
Westlye
,
F. R.
,
Battistoni
,
M.
,
Skeen
,
S. A.
,
Manin
,
J.
,
Pickett
,
L. M.
, and
Ivarsson
,
A.
,
2016
, “
Penetration and Combustion Characterization of Cavitating and Non-Cavitating Fuel Injectors Under Diesel Engine Conditions
,”
SAE
Paper No. 2016-01-0860.
10.
Pastor
,
J.
,
Garcia-Oliver
,
J.
,
Garcia
,
A.
, and
Morales López
,
A.
,
2018
, “
An Experimental Investigation on Spray Mixing and Combustion Characteristics for Spray c/d Nozzles in a Constant Pressure Vessel
,”
SAE
Paper No. 2018-01-1783.
11.
O'Connor
,
J.
, and
Musculus
,
M.
,
2013
, “
Post Injections for Soot Reduction in Diesel Engines: A Review of Current Understanding
,”
SAE Trans. J. Engines
,
6
(
1
), pp.
400
421
.
12.
Brusiani
,
F.
,
Falfari
,
S.
, and
Pelloni
,
P.
,
2014
, “
Influence of the Diesel Injector Hole Geometry on the Flow Conditions Emerging From the Nozzle
,”
Energy Procedia
,
45
, pp.
749
758
.
13.
Payri
,
R.
,
Salvador
,
F.-J.
,
Carreres
,
M.
, and
De la Morena
,
J.
,
2016
, “
Fuel Temperature Influence on the Performance of a Last Generation Common-rail Diesel Ballistic Injector—Part II: 1D Model Development, Validation and Analysis
,”
Energy Convers. Manage.
,
114
, pp.
367
391
.
14.
Herfatmanesh
,
M.-R.
,
Lu
,
P.
,
Attar
,
M.-A.
, and
Zhao
,
H.
,
2013
, “
Experimental Investigation Into the Effects of Two-Stage Injection on Fuel Injection Quantity, Combustion and Emissions in a High-Speed Optical Common Rail Diesel Engine
,”
Fuel
,
109
, pp.
137
149
.
15.
Payri
,
R.
,
Salvador
,
F.-J.
,
Gimeno
,
J.
, and
Venegas
,
O.
,
2013
, “
Study of Cavitation Phenomenon Using Different Fuels in a Transparent Nozzle by Hydraulic Characterization and Visualization
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
235
244
.
16.
Lopez
,
J. J.
,
de la Garza
,
O. A.
, and
De la Morena
,
J.
,
2017
, “
Effects of Cavitation in Common-Rail Diesel Nozzles on the Mixing Process
,”
Int. J. Engine Res.
,
18
(
10
), pp.
1017
1034
.
17.
Duke
,
D.
,
Swantek
,
A.
,
Tilocco
,
Z.
,
Kastengren
,
A.
,
Fezzaa
,
K.
,
Neroorkar
,
K.
,
Moulai
,
M.
,
Powell
,
C.
, and
Schmidt
,
D.
,
2014
, “
X-Ray Imaging of Cavitation in Diesel Injectors
,”
SAE Trans. J. Engines
,
7
(
2
), pp.
1003
1016
.
18.
Cao
,
Y.
,
Idlahcen
,
S.
,
Blaisot
,
J.-B.
,
Roze
,
C.
,
Mees
,
L.
, and
Maligne
,
D.
,
2017
, “
Effect of Geometry of Real-Size Transparent Nozzles on Cavitation and on the Atomizing Jet in the Near Field
,”
ILASS-Europe Conference
, Valencia, Spain, Sept. 6–8.
19.
Sun
,
Z.-Y.
,
Li
,
G.-X.
,
Chen
,
C.
,
Yu
,
Y.-S.
, and
Gao
,
G.-X.
,
2015
, “
Numerical Investigation on Effects of Nozzle's Geometric Parameters on the Flow and the Cavitation Characteristics Within Injector's Nozzle for a High-Pressure Common-Rail DI Diesel Engine
,”
Energy Convers. Manage.
,
89
, pp.
843
861
.
20.
Pelletingeas
,
A.
,
Dufresne
,
L.
, and
Seers
,
P.
,
2016
, “
Characterization of Flow Structures in a Diesel Injector for Different Needle Lifts and a Fluctuating Injection Pressure
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081105
.
21.
Amirahmadian
,
S.
,
2017
, “
A Comprehensive Parametric Study of the Effect of Cavitation Formation Inside Fuel Injector Nozzle With Different Needle Seat Shapes
,”
Int. J. Eng. Sci. Comput.
,
7
(
11
), pp. 15355–15361.https://pdfs.semanticscholar.org/05cb/6100cc9d2a6c100c3b696aef240817eed500.pdf
22.
Payri
,
R.
,
Bracho
,
G.
,
Marti-Aldaravi
,
P.
, and
Viera
,
A.
,
2017
, “
Near Field Visualization of Diesel Spray for Different Nozzle Inclination Angles in Non-Vaporizing Conditions
,”
Atomization Sprays
,
27
(
3
), pp.
251
267
.
23.
Yu
,
S.
,
Yin
,
B.
,
Deng
,
W.
,
Jia
,
H.
,
Ye
,
Z.
,
Xu
,
B.
, and
Xu
,
H.
,
2018
, “
Internal Flow and Spray Characteristics for Elliptical Orifice With Large Aspect Ratio Under Typical Diesel Engine Operation Conditions
,”
Fuel
,
228
, pp.
62
73
.
24.
Torelli
,
R.
,
Som
,
S.
,
Pei
,
Y.
,
Zhang
,
Y.
, and
Traver
,
M.
,
2017
, “
Influence of Fuel Properties of Internal Nozzle Flow Development in a Multi-Hole Diesel Injector
,”
Fuel
,
204
, pp.
171
184
.
25.
Hongwu
,
Z.
,
Quan
,
S.
,
Dai
,
M.
,
Pomraning
,
E.
,
Senecal
,
P. K.
,
Xue
,
Q.
,
Battistoni
,
M.
, and
Som
,
S.
,
2014
, “
Validation of a Three-Dimensional Internal Nozzle Flow Model Including Automatic Mesh Generation and Cavitation Effects
,”
ASME. J. Eng. Gas Turbines Power
,
136
(9), p.
092603
.
26.
Winklhofer
,
E.
,
Kull
,
E.
,
Kelz
,
E.
, and
Morozov
,
A.
,
2001
, “
Comprehensive Hydraulic and Flow Field Documentation in Model Throttle Experiments Under Cavitation Conditions
,”
ILASS-Europe Conference
, Zurich, Switzerland, Sept. 2–6, pp.
574
579
.
27.
Salvador
,
F.-J.
,
Martínez-López
,
J.
,
Caballer
,
M.
, and
De Alfonso
,
C.
,
2013
, “
Study of the Influence of the Needle Lift on the Internal Flow and Cavitation Phenomenon in Diesel Injector Nozzles by CFD Using RANS Methods
,”
Energy Convers. Manage.
,
66
, pp.
246
256
.
28.
Mohan
,
B.
,
Yang
,
W.
, and
Chou
,
S.
,
2014
, “
Cavitation in Injector Nozzle Holes a Parametric Study
,”
Eng. Appl. Comput. Fluid Mech.
,
8
(
1
), pp.
70
81
.
29.
Altimira
,
M.
, and
Fuchs
,
L.
,
2015
, “
Numerical Investigation of Throttle Flow Under Cavitating Conditions
,”
Int. J. Multiphase Flow
,
75
, pp.
124
136
.
30.
Pope
,
S.-B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
31.
Dittakavi
,
N.
,
Chunekar
,
A.
, and
Frankel
,
S.
,
2010
, “
Large Eddy Simulation of Turbulent-Cavitation Interactions in a Venturi Nozzle
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121301
.
32.
Salvador
,
F. J.
,
Martínez-López
,
J.
,
Romero
,
J.-V.
, and
Roselló
,
M.-D.
,
2013
, “
Computational Study of the Cavitation Phenomenon and Its Interaction With the Turbulence Developed in Diesel Injector Nozzles by Large Eddy Simulation (LES)
,”
Math. Comput. Modell.
,
57
(
7–8
), pp.
1656
1662
.
33.
Coussirat
,
M.
,
Moll
,
F.
,
Cappa
,
F.
, and
Fontanals
,
A.
,
2016
, “
Study of Available Turbulence and Cavitation Models to Reproduce Flow Patterns in Confined Flows
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091304
.
34.
Yuan
,
W.
,
Sauer
,
J.
, and
Schnerr
,
G.
,
2001
, “
Modeling and Computation of Unsteady Cavitation Flows in Injection Nozzles
,”
Mécanique Ind.
,
2
(
5
), pp.
383
394
.
35.
Hirt
,
C.
, and
Nichols
,
B.-D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
You do not currently have access to this content.