In this paper, capabilities of state-of-the-art computational fluid dynamics (CFD) tools in the prediction of the flow-field around a multihull catamaran advancing in straight ahead motion at nonzero drift angles are investigated. CFD estimations have been provided by three research institutes by using their in-house codes: CNR-INM using Xnavis, IIHR using CFDShip-Iowa, and CNRS/ECN using ISIS. These allowed an in-depth comparison between different methodologies, such as structured overlapping grids versus unstructured grid, different turbulence models and detached eddy simulations (DES) approaches, and level-set (LS) versus volume of fluid (VoF). The activities were pursued within the NATO AVT-183 group “reliable prediction of separated flow onset and progression for air and sea vehicles,” aimed at the assessment of CFD predictions of large three-dimensional separated flows. Comparison between estimations is provided for both integral and local quantities, and for wave-induced vortices. Validation is reported by comparison against the available experimental fluid dynamics (EFD) data. Generally, all the simulations are able to capture the main features of the flow field; grid resolution effects are dominant in the onset phase of coherent structures and turbulence model affects the dynamic of the vortices. Hydrodynamic loads are in agreement between the submissions with standard deviation of about 3.5% for the resistance prediction and about 7% for lateral force and yaw moment estimation. Wave-induced vortices are correctly captured by both LS and VoF approaches, even if some differences have been highlighted, LS showing well-defined and long life vortices.

References

References
1.
Stern
,
F.
,
Agdrup
,
K.
,
Kim
,
S. Y.
,
Cura-Hochbaum
,
A.
,
Rhee
,
K. P.
,
Quadvlieg
,
F.
,
Perdon
,
P.
,
Hino
,
T.
,
Broglia
,
R.
, and
Gorski
,
J.
,
2011
, “
Experience From SIMMAN 2008—The First Workshop on Verification and Validation of Ship Maneuvering Simulation Methods
,”
J. Ship Res.
,
55
(
2
), pp.
135
147
.http://www.marin.nl/upload/25460dec-3220-44ec-a4b4-12b05502016d_2011-JSR-55-2-Stern_etal_Experience%20from%20SIMMAN%202008.pdf
2.
Simonsen
,
C. D.
,
Stern
,
F.
, and
Quadvlieg
,
F.
, 2014, “
SIMMAN 2014: Workshop on V&V of Ship Manoeuvering Simulation Methods
,” Workshop Proceedings, Copenhagen, Denmark, Dec. 8–10.
3.
Larsson
,
L.
,
Stern
,
F.
, and
Visonneau
,
M.
,
2013
,
Numerical Ship Hydrodynamics: An Assessment of the Gothenburg 2010 Workshop
, Springer, Dordrecht, The Netherlands, p. 318.
4.
Larsson
,
L.
,
Stern
,
F.
,
Visonneau
,
M.
,
Hino
,
T.
,
Hirata
,
N.
, and
Kim
,
J.
, 2018, “
Tokyo 2015: A Workshop on CFD in Ship Hydrodynamics
,” Workshop Proceedings, Tokyo, Dec. 2–4.
5.
Marzi
,
J.
, and
Broglia
,
R.
,
2019
, “
Hydrodynamic Tools in Ship Design
,”
A Holistic Approach to Ship Design
,
A.
Papanikolaou
ed.,
Springer
,
Cham, Switzerland
.
6.
Visonneau
,
M.
,
Deng
,
G. B.
,
Guilmineau
,
E.
,
Queutey
,
P.
, and
Wackers
,
J.
,
2016
, “
Local and Global Assessment of the Flow Around the Japan Bulk Carrier With and Without Energy Saving Devices at Model and Full Scale
,”
31st Symposium on Naval Hydrodynamics, Monterey
, CA, Sept. 11–16.
7.
Stern
,
F.
, and
Toxopeus
,
S. L.
, 2017, “
Sea Facet Experimental and Computational Analysis Activities on Onset and Progression of Separation—Conclusions and Future Research
,” North Atlantic Treaty Organization Science & Technology Organization, Brussels, Belgium, Technical Report No. TR-AVT-183.
8.
Yoon
,
H.
,
Gui
,
L.
,
Bhushan
,
S.
, and
Stern
,
F.
,
2014
, “
Tomographic PIV Measurements for a Surface Combatant at Straight Ahead and Static Drift Conditions
,”
30th Symposium on Naval Hydrodynamics
, Hobart, Tasmania, Australia, Nov. 2–7.
9.
Bhushan
,
S.
,
Yoon
,
H.
,
Stern
,
F.
,
Guilmineau
,
E.
,
Visonneau
,
M.
,
Toxopeus
,
S.
,
Simonsen
,
C. D.
,
Aram
,
S.
,
Kim
,
S.-E.
, and
Grigoropoulos
,
G.
,
2018
, “
Assessment of CFD for Surface Combatant 5415 at Straight Ahead and Static Drift β = 20 deg
,”
ASME J. Fluids Eng.
,
141
(
5
), p. 051101.
10.
Abdel-Maksoud
,
M.
,
Müller
,
V.
,
Xing
,
T.
,
Toxopeus
,
S.
,
Stern
,
F.
,
Petterson
,
K.
,
Kim
,
S.-E.
,
Eloot
,
K.
,
Gietz
,
U.
,
Schiller
,
P.
, and
Rung
,
T.
,
2015
, “
Experimental and Numerical Investigations on Flow Characteristics of KVLCC2 at 30 deg Drift Angle
,”
Fifth World Maritime Technology Conference
, Providence, RI, Nov. 3–7.
11.
Broglia
,
R.
,
Zaghi
,
S.
,
Campana
,
E. F.
,
Visonneau
,
M.
,
Queutey
,
P.
,
Dogan
,
T.
,
Stern
,
F.
, and
Milanov
,
E.
,
2017
, “
Chapter 6 – CFD Validation for Flow Separation Onset and Progression Using DELFT Catamaran 372 in Static Drift Conditions
,” Reliable Prediction of Separated Flow Onset and Progression for Air and Sea Vehicles, Summary Report of the NATO STO AVT-183 Task Group, Brussels, Belgium, Report No. RDP, STO-TR-AVT-183.
12.
Zlatev
,
Z. Z.
,
Milanov
,
E.
,
Chotukova
,
V.
,
Sakamoto
,
N.
, and
Stern
,
F.
,
2009
, “
Combined Model-Scale EFD-CFD Investigation of the Maneuvering Characteristics of a High Speed Catamaran
,”
Tenth International Conference on Fast Sea Transportation
(
FAST
), Athens, Greece, Oct. 5–9, pp.
449
462
. https://www.researchgate.net/profile/Zlatko_Zlatev3/publication/265694699_Combined_Model_Scale_EFD-CFD_Investigation_of_the_Maneuvering_Characteristic_of_a_High_Speed_Catamaran/links/5486b9f50cf268d28f046053/Combined-Model-Scale-EFD-CFD-Investigation-of-the-Maneuvering-Characteristic-of-a-High-Speed-Catamaran.pdf
13.
Zlatev
,
Z. Z.
,
Grigoropoulos
,
G.
,
Milanov
,
E.
, and
Stern
,
F.
,
2011
, “
CFD Studies of the Delft 372 Catamaran Bare Hull in Deep and Shallow Water
,”
Specialists Meeting on Assessment of Stability and Control Prediction Methods for NATO Air & Sea Vehicles
, Portsdown, UK, Report No. NATO AVT-189.
14.
Milanov
,
E.
,
Zlatev
,
Z. Z.
,
Chotukova
,
V.
, and
Stern
,
F.
,
2010
, “
Numerical and Experimental Prediction of the Inherent Course Stability of High Speed Catamaran in Deep and Shallow Water
,”
28th Symposium on Naval Hydrodynamics
, Pasadena, CA, Sept. 12–17.http://www.academia.edu/23164701/Numerical_and_Experimental_Prediction_of_the_Inherent_Course_Stability_of_High_Speed_Catamaran_in_Deep_and_Shallow_Water
15.
Milanov
,
E.
, and
Stern
,
F.
,
2012
, “
Static Drift Angle Test of Delft 372 Catamaran Bare Hull Model in Deep and Shallow Water
,”
AVT-183 Meeting
, Biarritz, France, Oct. 15–19.
16.
Milanov
,
E.
, and
Georgiev
,
S.
,
2013
, “
Delft 373 Catamaran Maneuvering in Extreme Sea Conditions
,” Bulgarian Ship Hydrodynamics Centre, Varna, Bulgaria, Report No. KP102006/01.
17.
Miozzi
,
M.
,
2011
, “
Towing and Self-Propulsion Tests of Waterjet Propeller DELFT-372 Catamaran
,” CNR-INSEAN, Rome, Italy, Report No. 2011-TR-011.
18.
Castiglione
,
T.
,
Stern
,
F.
,
Bova
,
S.
, and
Kandasamy
,
M.
,
2011
, “
Numerical Investigation of the Seakeeping Behavior of a Catamaran Advancing in Regular Head Waves
,”
Ocean Eng.
,
38
(
16
), pp.
1806
1822
.
19.
Bouscasse
,
B.
,
Broglia
,
R.
, and
Stern
,
F.
,
2013
, “
Experimental Investigation of a Fast Catamaran in Head Waves
,”
Ocean Eng.
,
72
, pp.
318
330
.
20.
Broglia
,
R.
,
Zaghi
,
S.
, and
Di Mascio
,
A.
,
2011
, “
Numerical Simulation of Interference Effects for a High-Speed Catamaran
,”
J. Mar. Sci. Technol.
,
16
(
3
), pp.
254
269
.
21.
Broglia
,
R.
,
Jacob
,
B.
,
Zaghi
,
S.
,
Stern
,
F.
, and
Olivieri
,
A.
,
2013
, “
Experimental Investigation of Interference Effects for High-Speed Catamarans
,”
Ocean Eng.
,
76
, pp.
75
85
.
22.
Zaghi
,
S.
,
Broglia
,
R.
, and
Di Mascio
,
A.
,
2011
, “
Analysis of the Interference Effects for High-Speed Catamarans by Model Tests and Numerical Simulations
,”
Ocean Eng.
,
38
(
17–18
), pp.
2110
2122
.
23.
He
,
W.
,
Castiglione
,
T.
,
Kandasamy
,
M.
, and
Stern
,
F.
, 2015, “
Numerical Analysis of the Interference Effects on Resistance, Sinkage and Trim of a Fast Catamaran
,”
J. Mar. Sci. Technol.
,
20
(2), pp. 292–308.
24.
Milanov
,
E.
,
Chotukova
,
V.
,
Georgiev
,
F.
, and
Stern
,
F.
,
2011
, “
EFD Studies on Delft 372 Catamaran Directional Stability and Maneuverability in Deep and Shallow Water
,”
Specialists Meeting on Assessment of Stability and Control Prediction Methods for NATO Air & Sea Vehicles
, Portsdown, UK, Oct. 12–14, No. NATO AVT-189.
25.
Falchi
,
M.
,
Felli
,
M.
,
Grizzi
,
S.
,
Aloisio
,
G.
,
Broglia
,
R.
, and
Stern
,
F.
,
2014
, “
SPIV Measurements Around the DELFT 372 Catamaran in Steady Drift
,”
Exp. Fluids
,
55
(
11
), p. 1844.
26.
van't Veer
,
R.
,
1998
, “
Experimental Results of Motions and Structural Loads on the 372 Catamaran Model in Head and Oblique Waves
,” TU Delft, Delft, The Netherlands, Report No. 1130.
27.
van't Veer
,
R.
,
1998
, “
Experimental Results of Motions, Hydrodynamic Coefficients and Wave Loads on the 372 Catamaran Model
,” TU Delft, Delft, Netherlands, Report No. 1129.
28.
Di Mascio
,
A.
,
Broglia
,
R.
, and
Favini
,
B.
,
2001
,
A Second-order Godunov Type Scheme for Naval Hydrodynamics
,
Kluwer Academic/Plenum Publishers
, Boston, MA, pp.
253
261
.
29.
Di Mascio
,
A.
,
Broglia
,
R.
, and
Muscari
,
R.
,
2007
, “
On the Application of the Single-Phase Level Set Method to Naval Hydrodynamic Flows
,”
Comput. Fluids
,
36
, pp.
868
886
.
30.
Di Mascio
,
A.
,
Broglia
,
R.
, and
Muscari
,
R.
,
2009
, “
Prediction of Hydrodynamic Coefficients of Ship Hulls by High-Order Godunov-Type Methods
,”
J. Mar. Sci. Technol.
,
14
(
1
), pp.
19
29
.
31.
Di Mascio
,
A.
,
Muscari
,
R.
, and
Broglia
,
R.
,
2006
, “
An Overlapping Grids Approach for Moving Bodies Problems
,”
16th International Offshore and Polar Engineering Conference (ISOPE)
, San Francisco, CA, May 28–June 2, Paper No.
ISOPE-I-06-007
.https://www.onepetro.org/conference-paper/ISOPE-I-06-007
32.
Broglia
,
R.
,
Zaghi
,
S.
,
Muscari
,
R.
, and
Salvadore
,
F.
,
2014
, “
Enabling Hydrodynamics Solver for Efficient Parallel Simulations
,”
International Conference on High Performance Computing & Simulation
(
HPCS
), Bologna, Italy, July 21–25, pp.
803
810
.
33.
Broglia
,
R.
, and
Durante
,
D.
,
2018
, “
Accurate Prediction of Complex Free Surface Flow Around a High Speed Craft Using a Single-Phase Level Set Method
,”
Comput. Mech.
,
62
(
3
), pp.
421
437
.
34.
Favini
,
B.
,
Broglia
,
R.
, and
Di Mascio
,
A.
,
1996
, “
Multigrid Acceleration of Second-Order ENO Schemes From Low Subsonic to High Supersonic Flows
,”
Int. J. Numer. Methods Fluids
,
23
(
6
), pp.
589
606
.
35.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, A “
One–Equation Turbulence Model for Aerodynamic Flows
,”
La Rech. Aèrosp.
,
1
, pp.
5
21
.
36.
Huang
,
J.
,
Carrica
,
P.
, and
Stern
,
F.
,
2008
, “
Semi-Coupled Air/Water Immersed Boundary Approach for Curvilinear Dynamic Overset Grids With Application to Ship Hydrodynamics
,”
Int. J. Numer. Methods Fluids
,
58
(
6
), pp.
591
624
.
37.
Noack
,
R.
,
2005
, “
SUGGAR: A General Capability for Moving Body Overset Grid Assembly
,”
AIAA
Paper No. 2005–5117.
38.
Dogan
,
T. K.
,
2013
, “
URANS and DES for Delft Catamaran for Static Drift Conditions in Deep Water
,”
M.S. thesis
, University of Iowa, Iowa City, IA.https://ir.uiowa.edu/cgi/viewcontent.cgi?article=4606&context=etd
39.
Dogan
,
T. K.
,
Sadat-Hosseini
,
H.
, and
Stern
,
F.
,
2013
, “
DES of Delft Catamaran at Static Drift Condition
,”
Nav. Eng. J.
,
16
(
4
), pp.
97
101
.https://www.ingentaconnect.com/content/asne/nej/2014/00000126/00000004/art00025
40.
Menter
,
F.
,
1993
, “
Zonal Two Equation κ–ω Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93-2906.
41.
Deng
,
G.
, and
Visonneau
,
M.
,
1999
, “
Comparison of Explicit Algebraic Stress Models and Second-Order Turbulence Closures for Steady Flows Around Ships
,”
Seventh International Conference on Numerical Ship Hydrodynamics
, Nantes, France, July 19–22, pp. 1–15.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.534.5953&rep=rep1&type=pdf
42.
Duvigneau
,
R.
, and
Visonneau
,
M.
,
2003
, “
On the Role Played by Turbulence Closures in Hull Shape Optimization at Model and Full Scale
,”
J. Mar. Sci. Technol.
,
8
(1), pp.
11
25
.
43.
Guilmineau
,
E.
,
Chikhaoui
,
O.
,
Deng
,
G. B.
, and
Visonneau
,
M.
,
2013
, “
Cross Wind Effects on a Simplified Car Model by a DES Approach
,”
Comput. Fluids
,
78
, pp.
29
40
44.
Queutey
,
P.
, and
Visonneau
,
M.
,
2007
, “
An Interface Capturing Method for Free-Surface Hydrodynamic Flows
,”
Comput. Fluids
,
36
(
9
), pp.
1481
1510
.
45.
Leroyer
,
A.
, and
Visonneau
,
M.
,
2005
, “
Numerical Methods for RANSE Simulations of a Self-Propelled Fish-Like Body
,”
J. Fluid Struct.
,
20
(
3
), pp.
975
991
.
46.
Deng
,
G. B.
,
Queutey
,
P.
,
Visonneau
,
M.
, and
Salvatore
,
F.
,
2013
, “
Ship Propulsion Prediction With a Coupled RANSE-BEM Approach
,”
Fifth International Conference on Computational Methods in Marine Engineering (MARINE)
, Hamburg, Germany, May 29–31.
47.
Visonneau
,
M.
,
Queutey
,
P.
,
Wackers
,
J.
,
Deng
,
G. B.
, and
Guilmineau
,
E.
,
2012
, “
Sliding Grids and Adaptive Grid Refinement Applied to Ship Hydrodynamics
,”
29th Symposium on Naval Hydrodynamics
, Gothenburg, Sweden, Aug. 26–31.https://www.researchgate.net/publication/281385543_Sliding_Grids_and_Adaptive_Grid_Refinement_applied_to_Ship_Hydrodynamics
48.
Wackers
,
J.
,
Deng
,
G. B.
,
Guilmineau
,
E.
,
Leroyer
,
A.
,
Queutey
,
P.
, and
Visonneau
,
M.
,
2014
, “
Combined Refinement Criteria for Anisotropic Grid Refinement in Free-Surface Flow Simulation
,”
Comput. Fluids
,
92
, pp.
209
222
.
49.
Broglia
,
R.
,
Aloisio
,
G.
,
Falchi
,
M.
,
Grizzi
,
S.
,
Zaghi
,
S.
,
Felli
,
M.
,
Miozzi
,
M.
,
Pereira
,
F.
,
Di Felice
,
F.
, and
Stern
,
F.
,
2012
, “
Measurements of the Velocity Field Around the DELFT 372 Catamaran in Steady Drift
,”
29th Symposium on Naval Hydrodynamics
, Gothenburg, Sweden, Aug. 29–31.
50.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061403
.
51.
Xing
,
T.
, and
Stern
,
F.
,
2011
, “
Closure to ‘Discussion of ‘Factors of Safety for Richardson Extrapolation’
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
115502
.
52.
Yoon
,
H. Y.
,
2009
, “
Force/Moment and Phase-Averaged Stereo PIV Flow Measurements for Surface Combatant in PMM Maneuvers
,” Ph.D. dissertation, The University of Iowa, Iowa City, IA.
53.
ASME
,
2005
,“
Test Uncertainty
,” American Society of Mechanical Engineers, New York, Standard No. PTC 19.1-2005.
54.
Surana
,
A.
,
Grunberg
,
O.
, and
Haller
,
G.
,
2006
, “
Exact Theory of Three-Dimensional Flow Separation—Part I: Steady Separation
,”
J. Fluid Mech.
,
564
, pp.
57
103
.
55.
Délery
,
J. M.
,
2001
, “
Robert Legendre and Henri Werlé: Toward the Elucidation of Three-Dimensional Separation
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
129
154
.
56.
Olivieri
,
A.
,
Pistani
,
F.
,
Wilson
,
R.
,
Campana
,
E. F.
, and
Stern
,
F.
,
2007
, “
Scars and Vortices Induced by Ship Bow and Shoulder Wave Breaking
,”
ASME. J. Fluids Eng.
,
129
(
11
), pp.
1445
1459
.
You do not currently have access to this content.