The bubble formation frequency from a single-orifice nozzle subjected to the effects of a crossflowing liquid was investigated using high-speed shadowgraphy, combined with image analysis and signal processing techniques. The effects of the nozzle dimensions, orientation within the conduit, liquid cross-flow velocity, and gas mass flow rate were evaluated. Water and air were the working fluids. Existing expressions in the literature were compared to the experimental values obtained. The expressions showed modest agreement with the experimental mean average frequency magnitude. It was found that increasing the gas injection diameter could decrease the bubbling frequency approximately 12% until reaching a certain value (0.52 mm). Further increasing the nozzle dimensions increase the frequency by around 20%. Bubbling frequency is more sensitive to the liquid velocity where changes up to 63% occurred when the velocity was raised from 3.1 to 4.3 m/s. Increasing gas mass flow rates decreased the gas jet breakup frequency in all cases. This phenomenon was primarily attributed to changes in the bubbling mode from discrete bubbling to pulsating and jetting modes. The nozzle orientation plays a role in modifying the bubbling frequency, having a higher magnitude when oriented against gravity.

References

References
1.
Hinze
,
J. O.
,
1955
, “
Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes
,”
AIChE J.
,
1
(
3
), pp.
289
295
.
2.
Yeoh
,
G. H.
, and
Tu
,
J. Y.
,
2006
, “
Numerical Modelling of Bubbly Flows With and Without Heat and Mass Transfer
,”
Appl. Math. Modell.
,
30
(
10
), pp.
1067
1095
.
3.
Azizi
,
F.
, and
Al Taweel
,
A. M.
,
2007
, “
Population Balance Simulation of Gas–Liquid Contacting
,”
Chem. Eng. Sci.
,
62
(
24
), pp.
7436
7445
.
4.
Polli
,
M.
,
Di Stanislao
,
M.
,
Bagatin
,
R.
,
Bakr
,
E. A.
, and
Masi
,
M.
,
2002
, “
Bubble Size Distribution in the Sparger Region of Bubble Columns
,”
Chem. Eng. Sci.
,
57
(
1
), pp.
197
205
.
5.
Gemello
,
L.
,
Plais
,
C.
,
Augier
,
F.
,
Cloupet
,
A.
, and
Marchisio
,
D. L.
,
2018
, “
Hydrodynamics and Bubble Size in Bubble Columns: Effects of Contaminants and Spargers
,”
Chem. Eng. Sci.
,
184
, pp.
93
102
.
6.
Hesketh
,
R. P.
,
Etchells
,
A. W.
, and
Russell
,
T. W. F.
,
1991
, “
Experimental Observations of Bubble Breakage in Turbulent Flow
,”
Ind. Eng. Chem. Res.
,
30
(
5
), pp.
835
841
.
7.
Tan
,
R. B. H.
,
Chen
,
W. B.
, and
Tan
,
K. H.
, 2000, “
A Non-Spherical Model for Bubble Formation With Liquid-Cross Flow
,”
Chem. Eng. Sci.
,
55
(24), pp. 6259–6267.
8.
Thorat
,
B. N.
, and
Joshi
,
J. B.
,
2004
, “
Regime Transition in Bubble Columns: Experimental and Predictions
,”
Exp. Therm. Fluid Sci.
,
28
(
5
), pp.
423
430
.
9.
Sovani
,
S. D.
,
Sojka
,
P. E.
, and
Lefevbre
,
A. H.
,
2001
, “
Effervescent Atomization
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
483
521
.
10.
Iguchi
,
M.
, and
Chihara
,
T.
,
1998
, “
Water Model Study of the Frequency of Bubble Formation Under Reduced and Elevated Pressures
,”
Metall. Mater. Trans. B
,
29
(
4
), pp.
755
761
.
11.
Marshall
,
H. S.
,
Chudacek
,
M. W.
, and
Bagster
,
D. F.
,
1993
, “
A Model for Bubble Formation From an Orifice With Liquid Cross-Flow
,”
Chem. Eng. Sci.
,
48
(
11
), pp.
2049
2059
.
12.
Nahra
,
H. K.
, and
Kamotani
,
Y.
,
2003
, “
Prediction of Bubble Diameter at Detachment From a Wall Orifice in Liquid Cross-Flow Under Reduced and Normal Gravity Conditions
,”
Chem. Eng. Sci.
,
58
(
1
), pp.
55
69
.
13.
Tsuge
,
H.
, and
Hibino
,
S.-I.
,
1983
, “
Bubble Formation From an Orifice Submerged in Liquids
,”
Chem. Eng. Commun.
,
22
(
1–2
), pp.
63
79
.
14.
Goda
,
T.
,
Iguchi
,
M.
,
Sasaki
,
Y.
, and
Kiuchi
,
H.
,
2005
, “
Empirical Equations for Bubble Formation Frequency From Downward-Facing Nozzle With and Without Rotating Flow Effects
,”
Mater. Trans.
,
46
(
11
), pp.
2461
2466
.
15.
Iguchi
,
M.
,
Terauchi
,
Y.
, and
Yokoya
,
S.-I.
,
1998
, “
Effect of Cross-Flow on the Frequency of Bubble Formation From a Single-Hole Nozzle
,”
Metall. Mater. Trans. B
,
29
(
6
), pp.
1219
1225
.
16.
Martínez-Bazán
,
C.
,
Montañés
,
J. L.
, and
Lasheras
,
J. C.
,
1999
, “
On the Breakup of an Air Bubble Injected Into a Fully Developed Turbulent Flow—Part 1: Breakup Frequency
,”
J. Fluid Mech.
,
401
, pp.
157
182
.
17.
Kulkarni
,
A. A.
, and
Joshi
,
J. B.
,
2005
, “
Bubble Formation and Bubble Rise Velocity in Gas−Liquid Systems: A Review
,”
Ind. Eng. Chem. Res.
,
44
(
16
), pp.
5873
5931
.
18.
Xie
,
S.
, and
B. H. Tan
,
R.
,
2003
, “
Bubble Formation at Multiple Orifices—Bubbling Synchronicity and Frequency
,”
Chem. Eng. Sci.
,
58
(
20
), pp.
4639
4647
.
19.
Cai
,
Q.
,
Shen
,
X.
,
Shen
,
C.
, and
Dai
,
G.
,
2010
, “
A Simple Method for Identifying Bubbling/Jetting Regimes Transition From Large Submerged Orifices Using Electrical Capacitance Tomography (ECT
),”
Can. J. Chem. Eng.
,
88
(3), pp.
340
349
.
20.
Loubière
,
K.
,
Castaignede
,
V.
,
Hebrard
,
G.
, and
Roustan
,
M.
,
2004
, “
Bubble Formation at a Flexible Orifice With Liquid Cross-Flow
,”
Chem. Eng. Process.
,
43
(
6
), pp.
717
725
.
21.
Akagi
,
Y.
,
Okada
,
K.
,
Kosaka
,
K.
, and
Takahashi
,
T.
,
1987
, “
Liquid Weeping Accompanied by Bubble Formation at Submerged Orifices
,”
Ind. Eng. Chem. Res.
,
26
(
8
), pp.
1546
1550
.
22.
Sullivan
,
S. L.
,
J.
,
Hardy
,
B. W.
, and
Holland
,
C. D.
,
1964
, “
Formation of Air Bubbles at Orifices Submerged Beneath Liquids
,”
Am. Inst. Chem. Eng. J.
,
10
(
6
), pp.
848
854
.
23.
Badam
,
V. K.
,
Buwa
,
V.
, and
Durst
,
F.
,
2007
, “
Experimental Investigations of Regimes of Bubble Formation on Submerged Orifices Under Constant Flow Condition
,”
Can. J. Chem. Eng.
,
85
(
3
), pp.
257
267
.
24.
Balzán
,
M. A.
,
Sanders
,
R. S.
, and
Fleck
,
B. A.
,
2017
, “
Bubble Formation Regimes During Gas Injection Into a Liquid Cross Flow in a Conduit
,”
Can. J. Chem. Eng.
,
95
(
2
), pp.
372
385
.
25.
Di Marco
,
P.
,
Grassi
,
W.
,
Memoli
,
G.
,
Takamasa
,
T.
,
Tomiyama
,
A.
, and
Hosokawa
,
S.
,
2003
, “
Influence of Electric Field on Single Gas-Bubble Growth and Detachment in Microgravity
,”
Int. J. Multiph. Flow
,
29
(
4
), pp.
559
578
.
26.
Shepard
,
T. G.
,
Lee
,
J.
,
Yan
,
B.
, and
Strykowski
,
P. J.
,
2015
, “
Parameters Affecting Bubble Formation and Size Distribution From Porous Media
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031202
.
27.
Andreussi
,
P.
,
Paglianti
,
A.
, and
Silva
,
F. S.
,
1999
, “
Dispersed Bubble Flow in Horizontal Pipes
,”
Chem. Eng. Sci.
,
54
(
8
), pp.
1101
1107
.
28.
Balzan
,
M. A.
, and
Fleck
,
B. A.
,
2014
, “
Gas-Phase Probability Distribution in Liquid Cross-Flow
,”
Multiph. Sci. Technol.
,
26
(
3
), pp.
229
260
.
29.
Mahesh
,
K.
,
2013
, “
The Interaction of Jets With Crossflow
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
379
407
.
30.
Pamperin
,
O.
, and
Rath
,
H.
,
1995
, “
Influence of Buoyancy on Bubble Formation at Submerged Orifices
,”
Chem. Eng. Sci.
,
50
(
19
), pp.
3009
3024
.
31.
Haaland
,
S. E.
,
1983
, “
Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
89
90
.
32.
Balachandar
,
S.
, and
Eaton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
111
133
.
You do not currently have access to this content.