Inlet conditions for a turbulent jet are known to affect the near field behavior but eventually lose their significance downstream. Metrics of importance are often derived from mean and fluctuating velocity components, but little has been done to explore inlet effects on transport of a scalar quantity (e.g., temperature). This paper aims to provide fundamental understanding in this regard and employs large eddy simulations (LES) of a nonisothermal round turbulent jet (Reynolds number of 16,000) with geometry and boundary conditions mimicked after a well-known experimental study. The jet inlet is first modeled with a standard Blasius profile and next by performing a simulation of the upstream flow modeled with either detached eddy simulations (DES) or LES for the second and third approaches, respectively. Only the model employing LES for both upstream nozzle and downstream jet is found to completely capture the root-mean-square (RMS) temperature behavior, namely, a distinct hump when normalized by the local mean centerline temperature at roughly five diameters downstream. Regarding the far field conditions, all three inlet conditions converge for the centerline values, but the radial distributions still portray non-negligible differences. Not surprisingly, the complete LES modeling approach agrees the best with experimental data for mean and RMS distributions, suggesting that the inlet condition plays a vital role in both the near and far field of the jet. The current effort is the very first LES study to successfully capture flow physics for a nonisothermal round turbulent jet in near and far field locations.

References

1.
Hussein
,
H. J.
,
Capp
,
S. P.
, and
George
,
W. K.
,
1994
, “
Velocity Measurements in a High-Reynolds-Number, Momentum-Conserving, Axisymmetric, Turbulent Jet
,”
J. Fluid Mech.
,
258
(
1
), pp.
31
75
.
2.
Panchapakesan
,
N.
, and
Lumley
,
J.
,
1993
, “
Turbulence Measurements in Axisymmetric Jets of Air and Helium—Part 1: Air Jet
,”
J. Fluid Mech.
,
246
(
1
), pp.
197
223
.
3.
Ghahremanian
,
S.
, and
Moshfegh
,
B.
,
2013
, “
Evaluation of RANS Models in Predicting Low Reynolds, Free, Turbulent Round Jet
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
011201
.
4.
Smith
,
E. J.
,
Mi
,
J.
,
Nathan
,
G. J.
, and
Dally
,
B. B.
,
2004
, “
Preliminary Examination of a ‘Round Jet Initial Condition Anomaly’ for the k-ε Turbulence Model
,” 15th
Australasian Fluid Mechanics Conference
, Sydney, Australia, Dec. 13–17.
5.
Gohil
,
T. B.
,
Saha
,
A. K.
, and
Muralidhar
,
K.
,
2012
, “
Numerical Study of Instability Mechanisms in a Circular Jet at Low Reynolds Numbers
,”
Comput. Fluids
,
64
, pp.
1
18
.
6.
Lew
,
P. T.
,
Gopalakrishnan
,
P.
,
Casalino
,
D.
,
Shock
,
T.
,
Li
,
Y.
,
Zhang
,
R.
,
Chen
,
H.
,
Habibi
,
K.
, and
Mongeau
,
L. G.
,
2014
, “
An Extended Lattice Boltzmann Methodology for High Subsonic Jet Noise Prediction
,”
AIAA
Paper No. 2014-2755.
7.
Van der Velden
,
W. C.
,
Casalino
,
D.
,
Gopalakrishnan
,
P.
,
Jammalamadaka
,
A.
,
Li
,
Y.
,
Zhang
,
R.
, and
Chen
,
H.
,
2018
, “
Jet Noise Prediction: Validation and Physical Insight
,”
AIAA
Paper No. 2018-3617.
8.
Bogey
,
C.
, and
Bailly
,
C.
,
2009
, “
Turbulence and Energy Budget in a Self-Preserving Round Jet: Direct Evaluation Using Large Eddy Simulation
,”
J. Fluid Mech.
,
627
, pp.
129
160
.
9.
Gohil
,
T. B.
,
Saha
,
A. K.
, and
Muralidhar
,
K.
,
2014
, “
Large Eddy Simulation of a Free Circular Jet
,”
ASME J. Fluids Eng.
,
130
(5), p.
051205
.
10.
Salkhordeh
,
S.
,
Mazumdar
,
S.
,
Jana
,
A.
, and
Kimber
,
M.
,
2018
, “
Reynolds Number Dependence of Higher Order Statistics for Round Turbulent Jets Using Large Eddy Simulation
,”
Flow, Turbul. Combust.
, (epub).
11.
Gabard
,
G.
, and
Astley
,
R. J.
,
2006
, “
Theoretical Model for Sound Radiation From Annular Jet Pipes: Far- and Near-Field Solutions
,”
J. Fluid Mech.
,
549
(
1
), pp.
315
341
.
12.
Quinn
,
W. R.
,
2006
, “
Upstream Nozzle Shaping Effects on Near Field Flow in Round Turbulent Free Jets
,”
Eur. J. Mech. B
,
25
(
3
), pp.
279
301
.
13.
Kim
,
J.
, and
Choi
,
H.
,
2009
, “
Large Eddy Simulation of a Circular Jet: Effect of Inflow Conditions on the Near Field
,”
J. Fluid Mech.
,
620
, pp.
383
411
.
14.
Bogey
,
C.
, and
Bailly
,
C.
,
2010
, “
Influence of Nozzle-Exit Boundary-Layer Conditions on the Flow and Acoustic Fields of Initially Laminar Jets
,”
J. Fluid Mech.
,
663
, pp.
507
538
.
15.
Mi
,
J.
, and
Nathan
,
G.
,
2010
, “
Statistical Properties of Turbulent Free Jets Issuing From Nine Differently-Shaped Nozzles
,”
Flow, Turbul. Combust.
,
84
(
4
), pp.
583
606
.
16.
Aleyasin
,
S. S.
,
Fathi
,
N.
,
Tachie
,
M. F.
,
Vorobieff
,
P.
, and
Kourpriyanov
,
M.
,
2018
, “
On the Development of Incompressible Round and Equilateral Triangular Jets Due to Reynolds Number Variation
,”
ASME J. Fluids Eng.
,
140
(
11
), p.
111202
.
17.
Chua
,
L.
, and
Antonia
,
R.
,
1990
, “
Turbulent Prandtl Number in a Circular Jet
,”
Int. J. Heat Mass Transfer
,
33
(
2
), pp.
331
339
.
18.
Antonia
,
R.
, and
Mi
,
J.
,
1993
, “
Temperature Dissipation in a Turbulent Round Jet
,”
J. Fluid Mech.
,
250
(
1
), pp.
531
551
.
19.
Mi
,
J.
,
Nobes
,
D. S.
, and
Nathan
,
G.
,
2001
, “
Influence of Jet Exit Conditions on the Passive Scalar Field of an Axisymmetric Free Jet
,”
J. Fluid Mech.
,
432
, pp.
91
125
.https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/influence-of-jet-exit-conditions-on-the-passive-scalar-field-of-an-axisymmetric-free-jet/BF3FF0213B7DEE9B7189098A056A51EF
20.
Mi
,
J.
,
Nathan
,
G. J.
, and
Nobes
,
D. S.
,
2001
, “
Mixing Characteristics of Axisymmetric Free Jets From a Contoured Nozzle, an Orifice Plate and a Pipe
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
878
883
.
21.
George
,
W. K.
,
1989
, “
The Self-Similarity of Turbulent Flows and Its Relation to Initial Conditions and Coherent Structures
,”
Advances in Turbulence
,
W. K.
George
and
R. E. A.
Arndt
, eds.,
Hemisphere
,
New York
, pp.
39
73
.
22.
George
,
W. K.
,
2012
, “
Asymptotic Effect of Initial and Upstream Conditions on Turbulence
,”
ASME J. Fluids Eng.
,
134
(
6
), p.
061203
.
23.
Duffet
,
J. C.
, and
Benaïssa
,
A.
,
2013
, “
Influence of Initial Conditions on the Evolution Towards Similarity of Passive Scalar in Turbulent Round Jets
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
834
843
.
24.
Madjid
,
S.
,
Amina
,
S.
, and
Benaissa
,
A.
,
2015
, “
Effect of Orifice Geometry on the Development of Slightly Heated Turbulent Jets
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111202
.
25.
Xu
,
G.
, and
Antonia
,
R. A.
,
2002
, “
Effect of Inlet Conditions on the Temperature Field of a Turbulent Round Free Jet
,”
Int. Commun. Heat Mass Transfer
,
29
(
8
), pp.
1057
1068
.
26.
Lubbers
,
C. L.
,
Brethouwer
,
G.
, and
Boersma
,
B. J.
,
2001
, “
Simulation of the Mixing of a Passive Scalar in a Round Turbulent Jet
,”
Fluid Dyn. Res.
,
28
(
3
), pp.
189
208
.
27.
Suto
,
H.
,
Matsubara
,
K.
,
Kobayashi
,
M.
, and
Kaneko
,
Y.
,
2004
, “
Large Eddy Simulation of Flow and Scalar Transport in a Round Jet
,”
Heat Transfer—Asian Res.
,
33
(
3
), pp.
175
188
.
28.
Colombo
,
E.
,
Inzoli
,
F.
,
Muzzio
,
A.
, and
Teatini
,
J.
,
2008
, “
LES Modelling for Free, Incompressible and Non-Isothermal Round Jet
,”
Fifth European Thermal-Sciences Conference
, Eindhoven, The Netherlands, May 18–22, pp.
1
8
.
29.
Boguslawski
,
A.
,
Tyliszczak
,
A.
, and
Wawrzak
,
K.
,
2016
, “
Large Eddy Simulation Predictions of Absolutely Unstable Round Hot Jet
,”
Phys. Fluids
,
28
(
2
), p.
025108
.
30.
Mejía
,
J. M.
,
Sadiki
,
A.
,
Molina
,
A.
,
Chejne
,
F.
, and
Pantangi
,
P.
,
2015
, “
Large Eddy Simulation of the Mixing of a Passive Scalar in a High-Schmidt Turbulent Jet
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031301
.
31.
Bogey
,
C.
,
Marsden
,
O.
, and
Bailly
,
C.
,
2011
, “
Large-Eddy Simulation of the Flow and Acoustic Fields of a Reynolds Number 105 Subsonic Jet With Tripped Exit Boundary Layers
,”
Phys. Fluids
,
23
(
3
), p.
035104
.
32.
Bogey
,
C.
,
Marsden
,
O.
, and
Bailly
,
C.
,
2012
, “
Influence of Initial Turbulence Level on the Flow and Sound Fields of a Subsonic Jet at a Diameter-Based Reynolds Number of 105
,”
J. Fluid Mech.
,
701
, pp.
352
385
.
33.
Bogey
,
C.
, and
Bailly
,
C.
,
2006
, “
Computation of a High Reynolds Number Jet and Its Radiated Noise Using Large Eddy Simulation Based on Explicit Filtering
,”
Comput. Fluids
,
35
(
10
), pp.
1344
1358
.
34.
Salkhordeh
,
S.
,
Clifford
,
C.
,
Jana
,
A.
, and
Kimber
,
M. L.
,
2018
, “
Large Eddy Simulations of Scaled HTGR Lower Plenum for Assessment of Turbulent Mixing
,”
Nucl. Eng. Des.
,
334
, pp.
24
41
.
35.
Bogey
,
C.
, and
Marsden
,
O.
,
2016
, “
Simulations of Initially Highly Disturbed Jets With Experiment-Like Exit Boundary Layers
,”
AIAA J.
,
54
(
4
), pp.
1299
1312
.
36.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
,
Fundamental of Boundary-Layer Theory
,
Springer-Verlag
,
Berlin
.
37.
Foysi
,
H.
,
Mellado
,
J. P.
, and
Sarkar
,
S.
,
2010
, “
Large-Eddy Simulation of Variable-Density Round and Plane Jets
,”
Int. J. Heat Fluid Flow
,
31
(
3
), pp.
307
314
.
38.
Chassaing
,
P.
,
Antonia
,
R.
,
Anselmet
,
F.
,
Joly
,
L.
, and
Sarkar
,
S.
,
2013
,
Variable Density Fluid Turbulence
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
39.
Fureby
,
C.
,
Tabor
,
G.
,
Weller
,
H.
, and
Gosman
,
A.
,
1997
, “
A Comparative Study of Subgrid Scale Models in Homogeneous Isotropic Turbulence
,”
Phys. Fluids
,
9
(
5
), pp.
1416
1429
.
40.
Lilly
,
D.
,
1992
, “
A Proposed Modification of the Germano Subgrid‐Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
.
41.
D'Alessandro
,
V.
,
Montelpare
,
S.
, and
Ricci
,
R.
,
2016
, “
Detached–Eddy Simulations of the Flow Over a Cylinder at Re = 3900 Using OpenFOAM
,”
Comput. Fluids
,
136
, pp.
152
169
.
42.
Mi
,
J.
,
Xu
,
M.
, and
Zhou
,
T.
,
2013
, “
Reynolds Number Influence on Statistical Behaviors of Turbulence in a Circular Free Jet
,”
Phys. Fluids
,
25
(
7
), p.
075101
.
43.
Mi
,
J.
,
Nathan
,
G.
, and
Luxton
,
R.
,
2000
, “
Centreline Mixing Characteristics of Jets From Nine Differently Shaped Nozzles
,”
Exp. Fluids
,
28
(
1
), pp.
93
94
.
44.
Bogey
,
C.
, and
Bailly
,
C.
,
2006
, “
Large Eddy Simulations of Transitional Round Jets: Influence of the Reynolds Number on Flow Development and Energy Dissipation
,”
Phys. Fluids
,
18
(
6
), p.
065101
.
45.
Bodony
,
D. J.
, and
Lele
,
S. K.
,
2005
, “
On Using Large-Eddy Simulation for the Prediction of Noise From Cold and Heated Turbulent Jets
,”
Phys. Fluids
,
17
(
8
), p.
085103
.
46.
Bodony
,
D. J.
, and
Lele
,
S. K.
,
2008
, “
Current Status of Jet Noise Predictions Using Large-Eddy Simulation
,”
AIAA J.
,
46
(
2
), pp.
364
380
.
You do not currently have access to this content.