Tip clearance in pump induces tip leakage vortex (TLV), which interacts with the main flow and leads to instability of flow pattern and decrease of pump performance. In this work, the characteristics of TLV in a mixed-flow pump are investigated by the numerical simulation using shear stress transport (SST) k–ω turbulence model with experimental validation. The trajectory of the primary tip leakage vortex (PTLV) is determined, and a power function law is proposed to describe the intensity of the PTLV core along the trajectory. Spatial–temporal evolution of the TLV in an impeller revolution period T can be classified into three stages: splitting stage, developing stage, and merging stage. The TLV oscillation period TT is found as 19/160 T, corresponding to the frequency 8.4 fi (fi is impeller rotating frequency). Results reveal that the TLV oscillation is intensified by the sudden pressure variation at the junction of two adjacent blades. On analysis of the relative vorticity transport equation, it is revealed that the relative vortex stretching item in Z direction is the major source of the splitting and shedding of the PTLV. The dominant frequency of pressure and vorticity fluctuations on the PTLV trajectory is 8.4 fi, same as the TLV oscillation frequency. This result reveals that the flow instability in the PTLV trajectory is dominated by the oscillation of the TLV. The blade number has significant effect on pressure fluctuation in tip clearance and on blade pressure side, because the TLV oscillation period varies with the circumferential length of flow passage.

References

References
1.
Okot
,
D. K.
,
2013
, “
Review of Small Hydropower Technology
,”
Renewable Sustainable Energy Rev.
,
26
(
10
), pp.
515
520
.
2.
Kong
,
Y.
,
Kong
,
Z.
,
Liu
,
Z.
,
Wei
,
C.
,
Zhang
,
J.
, and
An
,
G.
,
2017
, “
Pumped Storage Power Stations in China: The Past, the Present, and the Future
,”
Renewable Sustainable Energy Rev.
,
71
, pp.
720
731
.
3.
Zhang
,
Y.
,
Zheng
,
X.
,
Li
,
J.
, and
Du
,
X.
,
2019
, “
Experimental Study on the Vibrational Performance and Its Physical Origins of a Prototype Reversible Pump Turbine in the Pumped Hydro Energy Storage Power Station
,”
Renewable Energy
,
130
(
1
), pp.
667
676
.
4.
Zhang
,
Y.
,
Chen
,
T.
,
Li
,
J.
, and
Yu
,
J.
,
2017
, “
Experimental Study of Load Variations on Pressure Fluctuations in a Prototype Reversible Pump Turbine in Generating Mode
,”
ASME J. Fluids Eng.
,
139
(
7
), p.
074501
.
5.
Liu
,
Y.
,
Tan
,
L.
,
Hao
,
Y.
, and
Xu
,
Y.
,
2017
, “
Energy Performance and Flow Patterns of a Mixed-Flow Pump With Different Tip Clearance Sizes
,”
Energies
,
10
(
2
), p.
191
.
6.
Thakker
,
A.
, and
Dhanasekaran
,
T.
,
2004
, “
Computed Effects of Tip Clearance on Performance of Impulse Turbine for Wave Energy Conversion
,”
Renewable Energy
,
29
(
4
), pp.
529
547
.
7.
Taha
,
Z.
,
Sugiyono
,
Tuan Ya
,
T. M. Y. S.
, and
Sawada
,
T.
,
2011
, “
Numerical Investigation on the Performance of Wells Turbine With Non-Uniform Tip Clearance for Wave Energy Conversion
,”
Appl. Ocean Res.
,
33
(
4
), pp.
321
331
.
8.
Kim
,
S.
,
Choi
,
C.
,
Park
,
J.
, and
Baek
,
J.
,
2013
, “
Effects of Tip Clearance on Performance and Characteristics of Backflow in a Turbopump Inducer
,”
Proc. Inst. Mech. Eng. A
,
227
(
8
), pp.
847
857
.
9.
Kim
,
S.
,
Choi
,
C.
,
Kim
,
J.
,
Park
,
J.
, and
Baek
,
J.
,
2013
, “
Tip Clearance Effects on Cavitation Evolution and Head Breakdown in Turbopump Inducer
,”
J. Propul. Power
,
29
(
6
), pp.
1357
1366
.
10.
Liu
,
Y.
,
Tan
,
L.
, and
Wang
,
B.
,
2018
, “
A Review of Tip Clearance in Propeller, Pump and Turbine
,”
Energies
,
11
(
9
), p.
2202
.
11.
Zhang
,
W.
,
Yu
,
Z.
, and
Zhu
,
B.
,
2017
, “
Influence of Tip Clearance on Pressure Fluctuation in Low Specific Speed Mixed-Flow Pump Passage
,”
Energies
,
10
(
2
), p.
148
.
12.
Feng
,
J.
,
Luo
,
X.
,
Guo
,
P.
, and
Wu
,
G.
,
2016
, “
Influence of Tip Clearance on Pressure Fluctuations in an Axial Flow Pump
,”
J. Mech. Sci. Technol.
,
30
(
4
), pp.
1603
1610
.
13.
Hao
,
Y.
, and
Tan
,
L.
,
2018
, “
Symmetrical and Unsymmetrical Tip Clearances on Cavitation Performance and Radial Force of a Mixed Flow Pump as Turbine at Pump Mode
,”
Renewable Energy
,
127
, pp.
368
376
.
14.
Szantyr
,
J.
,
Flaszyński
,
P.
,
Tesch
,
K.
,
Suchecki
,
W.
, and
Alabrudziński
,
S.
,
2012
, “
An Experimental and Numerical Study of Tip Vortex Cavitation
,”
Pol. Marit. Res.
,
18
(
4
), pp.
14
22
.
15.
Decaix
,
J.
,
Balarac
,
G.
,
Dreyer
,
M.
,
Mohamed
,
F.
, and
Münch
,
C.
,
2015
, “
RANS and LES Computations of the Tip-Leakage Vortex for Different Gap Widths
,”
J. Turbul.
,
16
(
4
), pp.
309
341
.
16.
Wu
,
H.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2011
, “
Measurements of the Tip Leakage Vortex Structures and Turbulence in the Meridional Plane of an Axial Water-Jet Pump
,”
Exp. Fluids
,
50
(
4
), pp.
989
1003
.
17.
Miorini
,
R. L.
,
Wu
,
H.
, and
Katz
,
J.
,
2010
, “
The Internal Structure of the Tip Leakage Vortex Within the Rotor of an Axial Waterjet Pump
,”
ASME J. Turbomach.
,
134
(
3
), pp.
403
419
.
18.
Wu
,
H.
,
Tan
,
D.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2011
, “
Three-Dimensional Flow Structures and Associated Turbulence in the Tip Region of a Waterjet Pump Rotor Blade
,”
Exp. Fluids
,
51
(
6
), pp.
1721
1737
.
19.
You
,
D.
,
Wang
,
M.
,
Mittal
,
R.
, and
Moin
,
P.
,
2004
, “
Study of Tip-Clearance Flow in Turbomachines Using Large-Eddy Simulation
,”
Comput. Sci. Eng.
,
6
(
6
), pp.
38
46
.
20.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2007
, “
Large-Eddy Simulation Analysis of Mechanisms for Viscous Losses in a Turbomachinery Tip-Clearance Flow
,”
J. Fluid Mech.
,
586
, pp.
177
204
.
21.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2007
, “
Vortex Dynamics and Low-Pressure Fluctuations in the Tip-Clearance Flow
,”
ASME J. Fluids Eng.
,
129
(
8
), pp.
1002
1014
.
22.
Zhang
,
D.
,
Shi
,
W.
,
van Esch
,
B. P. M.
,
Shi
,
L.
, and
Dubussion
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Trajectory and Dynamics in an Axial Flow Pump
,”
Comput. Fluids
,
112
, pp.
61
71
.
23.
Liu
,
Y.
, and
Tan
,
L.
,
2018
, “
Tip Clearance on Pressure Fluctuation Intensity and Vortex Characteristic of a Mixed Flow Pump as Turbine at Pump Mode
,”
Renewable Energy
,
129
, pp.
606
615
.
24.
Zhang
,
D.
,
Shi
,
W.
,
Pan
,
D.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Cavitation Patterns and Mechanisms in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121103
.
25.
Tan
,
D.
,
Li
,
Y.
,
Wilkes
,
I.
,
Vagnoni
,
E.
,
Miorini
,
R.
, and
Katz
,
J.
,
2015
, “
Experimental Investigation of the Role of Large Scale Cavitating Vortical Structures in Performance Breakdown of an Axial Waterjet Pump
,”
ASME J. Fluids Eng.
,
137
(
11
), pp.
317
320
.
26.
Mei
,
L.
, and
Zhou
,
J.
,
2015
, “
Effects of Blade Tip Foil Thickening on Tip Vortexes in Ducted Propeller
,”
Third International Conference on Material, Mechanical and Manufacturing Engineering
,
Guangzhou, China
,
June 27–28
, pp.
1672
1679
.
27.
Tan
,
L.
,
Xie
,
Z.
,
Liu
,
Y.
,
Hao
,
Y.
, and
Xu
,
Y.
,
2018
, “
Influence of T-Shape Tip Clearance on Performance of a Mixed-Flow Pump
,”
Proc. Inst. Mech. Eng. A
,
232
(
4
), pp.
386
396
.
28.
Guo
,
Q.
,
Zhou
,
L.
, and
Wang
,
Z.
,
2016
, “
Numerical Evaluation of the Clearance Geometries Effect on the Flow Field and Performance of a Hydrofoil
,”
Renewable Energy
,
99
, pp.
390
397
.
29.
Liu
,
Y.
, and
Tan
,
L.
,
2018
, “
Method of C Groove on Vortex Suppression and Energy Performance Improvement for a NACA0009 Hydrofoil With Tip Clearance in Tidal Energy
,”
Energy
,
155
, pp.
448
461
.
30.
Zhang
,
Y.
,
Liu
,
K.
,
Xian
,
H.
, and
Du
,
X.
,
2017
, “
A Review of Methods for Vortex Identification in Hydroturbines
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
1269
1285
.
31.
Liu
,
M.
,
Tan
,
L.
, and
Cao
,
S.
,
2018
, “
Cavitation-Vortex-Turbulence Interaction and One-Dimensional Model Prediction of Pressure for Hydrofoil ALE15 by Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
141
(
2
), p.
021103
.
You do not currently have access to this content.