In this paper, the impact of distilled water drops on hydrophobic cylinders is characterized using both experiments and numerical simulations. Water drops of 2.54 mm in diameter impact with a velocity of 1 m/s on hydrophobic cylinders. The corresponding Reynolds and Weber numbers are 2800 and 34, respectively. Three different stainless steel cylinders with diameters of 0.48 mm, 0.88 mm, and 1.62 mm were used. The surfaces of the cylinders were made hydrophobic using a special coating spray. An experimental setup consisting of a drop generator, a high-speed camera, a lighting system, and a photoelectric sensor was used to capture images of the impact with a time-step of 1 ms. The images were then analyzed using an image processing technique implemented in the matlab software. Both the centric and off-centric impacts were studied for each cylinder diameter. A numerical simulation of the impact was also obtained using an open-source code called OpenFOAM by employing its InterFoam solver. The numerical scheme used by the solver is the volume-of-fluid (VOF) method. The predicted images of the simulations were compared well with those of the captured photographs both qualitatively and quantitatively for the entire experiments. The behavior of the drop after the impact and the subsequent deformation on hydrophobic cylinders including flow instabilities, liquid breakup, and secondary drops formation were observed from both simulations and experiments. By decreasing the cylinder diameter, the breakup occurs sooner, and a smaller number of secondary drops are formed.

References

1.
Das
,
S.
,
Yang
,
B.
,
Gu
,
G.
,
Joshi
,
P. C.
,
Ivanov
,
I. N.
,
Rouleau
,
C. M.
,
Aytug
,
T.
,
Geohegan
,
D. B.
, and
Xiao
,
K.
,
2015
, “
High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing
,”
ACS Photon.
,
2
(
6
), pp.
680
686
.
2.
Yusof
,
A.
,
Keegan
,
H.
,
Spillane
,
C. D.
,
Sheils
,
O. M.
,
Martin
,
C. M.
,
O'Leary
,
J. J.
,
Zengerle
,
R.
, and
Koltay
,
P.
,
2011
, “
Inkjet-Like Printing of Single-Cells
,”
Lab Chip
,
11
(
14
), pp.
2447
2454
.
3.
Lu
,
Y.
,
Sathasivam
,
S.
,
Song
,
J.
,
Crick
,
C. R.
,
Carmalt
,
C. J.
, and
Parkin
,
I. P.
,
2015
, “
Robust Self-Cleaning Surfaces That Function When Exposed to Either Air or Oil
,”
Science
,
347
(
6226
), pp.
1132
1135
.
4.
Mishchenko
,
L.
,
Hatton
,
B.
,
Bahadur
,
V.
,
Taylor
,
J. A.
,
Krupenkin
,
T.
, and
Aizenberg
,
J.
,
2010
, “
Design of Ice-Free Nanostructured Surfaces Based on Repulsion of Impacting Water Droplets
,”
ACS Nano
,
4
(
12
), pp.
7699
7707
.
5.
Chandra
,
S.
, and
Avedisian
,
C.
,
1991
, “
On the Collision of a Droplet With a Solid Surface
,”
Proc. R. Soc. Lond. A
,
432
(
1884
), pp.
13
41
.
6.
Mao
,
T.
,
Kuhn
,
D. C.
, and
Tran
,
H.
,
1997
, “
Spread and Rebound of Liquid Droplets Upon Impact on Flat Surfaces
,”
AIChE J.
,
43
(
9
), pp.
2169
2179
.
7.
Range
,
K.
, and
Feuillebois
,
F.
,
1998
, “
Influence of Surface Roughness on Liquid Drop Impact
,”
J. Colloid Interface Sci.
,
203
(
1
), pp.
16
30
.
8.
Roisman
,
I. V.
,
Rioboo
,
R.
, and
Tropea
,
C.
,
2002
, “
Normal Impact of a Liquid Drop on a Dry Surface: Model for Spreading and Receding
,”
Proc. R. Soc. Lond. A
,
458
(
2022
), pp.
1411
1430
.
9.
Roisman
,
I.
,
Opfer
,
L.
,
Tropea
,
C.
,
Raessi
,
M.
,
Mostaghimi
,
J.
, and
Chandra
,
S.
,
2008
, “
Drop Impact Onto a Dry Surface: Role of the Dynamic Contact Angle
,”
Colloids Surf. A
,
322
(
1–3
), pp.
183
191
.
10.
Bakshi
,
S.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2007
, “
Investigations on the Impact of a Drop Onto a Small Spherical Target
,”
Phys. Fluids
,
19
(
3
), p.
032102
.
11.
Yan‐Peng
,
L.
, and
Huan‐Ran
,
W.
,
2011
, “
Three‐Dimensional Direct Simulation of a Droplet Impacting Onto a Solid Sphere With Low‐Impact Energy
,”
Can. J. Chem. Eng.
,
89
(
1
), pp.
83
91
.
12.
Hung
,
L.
, and
Yao
,
S.
,
1999
, “
Experimental Investigation of the Impaction of Water Droplets on Cylindrical Objects
,”
Int. J. Multiphase Flow
,
25
(
8
), pp.
1545
1559
.
13.
Pasandideh-Fard
,
M.
,
Bussmann
,
M.
, and
Chandra
,
S.
,
2001
, “
Simulating Droplet Impact on a Substrate of Arbitrary Shape
,”
Atomization Sprays
,
11
(
4
), pp.
397
414
.
14.
Liang
,
G.
,
Yang
,
Y.
,
Guo
,
Y.
,
Zhen
,
N.
, and
Shen
,
S.
,
2014
, “
Rebound and Spreading During a Drop Impact on Wetted Cylinders
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
97
103
.
15.
Comtet
,
J.
,
Keshavarz
,
B.
, and
Bush
,
J. W.
,
2016
, “
Drop Impact and Capture on a Thin Flexible Fiber
,”
Soft Matter
,
12
(
1
), pp.
149
156
.
16.
Lorenceau
,
E.
,
Clanet
,
C.
,
Quéré
,
D.
, and
Vignes-Adler
,
M.
,
2009
, “
Off-Centre Impact on a Horizontal Fibre
,”
Eur. Phys. J. Spec. Top.
,
166
(
1
), pp.
3
6
.
17.
Zheng
,
J.
,
Wang
,
J.
,
Yu
,
Y.
, and
Chen
,
T.
,
2018
, “
Hydrodynamics of Droplet Impingement on a Thin Horizontal Wire
,”
Math. Probl. Eng.
,
2018
, pp. 1–8.
18.
Tsai
,
P.
,
Pacheco
,
S.
,
Pirat
,
C.
,
Lefferts
,
L.
, and
Lohse
,
D.
,
2009
, “
Drop Impact Upon Micro-and Nanostructured Superhydrophobic Surfaces
,”
Langmuir
,
25
(
20
), pp.
12293
12298
.
19.
Kannan
,
R.
, and
Sivakumar
,
D.
,
2008
, “
Drop Impact Process on a Hydrophobic Grooved Surface
,”
Colloids Surf. A
,
317
(
1–3
), pp.
694
704
.
20.
Jung
,
Y. C.
, and
Bhushan
,
B.
,
2008
, “
Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces
,”
Langmuir
,
24
(
12
), pp.
6262
6269
.
21.
Villa
,
F.
,
Antonini
,
C.
,
Marengo
,
M.
, and
Roisman
,
I. V.
,
2014
, “
Experimental Analysis of High Weber Number Drop Impact Onto Super-Hydrophobic and Hydrophobic Surfaces
,”
15th International Heat Transfer Conference
, Kyoto, Japan, Aug. 10–15, pp. 5749–5762https://cris.brighton.ac.uk/ws/portalfiles/portal/419421/ihtc_2014_paper_final_submitted_v9.pdf.
22.
Abolghasemibizaki
,
M.
,
McMasters
,
R. L.
, and
Mohammadi
,
R.
,
2018
, “
Towards the Shortest Possible Contact Time: Droplet Impact on Cylindrical Superhydrophobic Surfaces Structured With Macro-Scale Features
,”
J. Colloid Interface Sci.
,
521
, pp.
17
23
.
23.
Pasandideh-Fard
,
M.
,
Bhola
,
R.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
1998
, “
Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments
,”
Int. J. Heat Mass Transfer
,
41
(
19
), pp.
2929
2945
.
24.
Pasandideh‐Fard
,
M.
,
Qiao
,
Y.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
1996
, “
Capillary Effects During Droplet Impact on a Solid Surface
,”
Phys. Fluids
,
8
(
3
), pp.
650
659
.
25.
Esmailzadeh
,
H.
, and
Passandideh-Fard
,
M.
,
2014
, “
Numerical and Experimental Analysis of the Fluid-Structure Interaction in Presence of a Hyperelastic Body
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111107
.
26.
Sardarabadi
,
M.
,
Passandideh-Fard
,
M.
, and
Heris
,
S. Z.
,
2014
, “
Experimental Investigation of the Effects of Silica/Water Nanofluid on PV/T (Photovoltaic Thermal Units)
,”
Energy
,
66
, pp.
264
272
.
27.
Castrup
,
H.
,
2004
, “
Selecting and Applying Error Distributions in Uncertainty Analysis
,”
Measurement Science Conference
,
Anaheim, CA
,
Jan. 16–17
.
28.
Iranmanesh
,
A.
, and
Passandideh-Fard
,
M.
,
2017
, “
A Three-Dimensional Numerical Approach on Water Entry of a Horizontal Circular Cylinder Using the Volume of Fluid Technique
,”
Ocean Eng.
,
130
, pp.
557
566
.
29.
Brackbill
,
J.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
30.
Khalili
,
M.
,
Yahyazadeh
,
H.
,
Gorji-Bandpy
,
M.
, and
Ganji
,
D.
,
2016
, “
Application of Volume of Fluid Method for Simulation of a Droplet Impacting a Fiber
,”
Propul. Power Res.
,
5
(
2
), pp.
123
133
.
You do not currently have access to this content.