In this paper, we report an experimental approach to examine a fast-developing flow in a thin fluid gap. The phenomenon is widely observed in industrial applications, e.g., squeeze dampers, and in biological systems, e.g., joints lubrication. However, experimental investigations that capture the transient nature of the flow during the process are lacking. An experimental setup, consisting of a piston equipped with a laser displacement sensor and a pressure transducer, was developed. The loading surface was released from rest, creating a fast compaction on the fluid. The motion of the piston and the resulting changes of fluid pressure were recorded and compared to four representative theoretical models. The results show that the maximum pressure increases with gap height and/or the applied loading. A higher fluid viscosity leads to a lower maximum pressure but significantly extends the fluid pressure relaxation time. It is clearly demonstrated that the pressure response is governed by both the inertial effect due to the local acceleration, and the viscous effect due to the stokes resistance, revealing fundamental physics during the fast-developing squeezing flow process.

References

References
1.
Centers for Disease Control and Prevention
,
1997
, “
Sports-Related Recurrent Brain Injuries–United States
,”
Int. J. Trauma Nurs.
,
3
(
3
), pp.
88
90
.
2.
Thunnan
,
D. J.
,
Branche
,
C. M.
, and
Sniezek
,
J. E.
,
1998
, “
The Epidemiology of Sports-Related Traumatic Brain Injuries in the United States: Recent Developments
,”
J. Head Trauma Rehabil.
,
13
(
2
), pp.
1
8
.
3.
Saboori
,
P.
, and
Sadegh
,
A.
,
2011
, “
Material Modeling of the Head's Subarachnoid Space
,”
Sci. Iran.
,
18
(
6
), pp.
1492
1499
.
4.
King
,
A. I.
,
Ruan
,
J. S.
,
Zhou
,
C.
,
Hardy
,
W. N.
, and
Khalil
,
T. B.
,
1995
, “
Recent Advances in Biomechanics of Brain Injury Research: A Review
,”
J. Neurotrauma
,
12
(
4
), pp.
651
658
.
5.
Hardy
,
W. N.
,
Foster
,
C. D.
,
King
,
A. I.
, and
Tashman
,
S.
,
1997
, “
Investigation of Brain Injury Kinematics: Introduction of a New Technique
,” Sixth, Crashworthiness, Occupant Protection and Biomechanics in Transportation Systems, Dallas, TX, Nov. 16–21, pp.
241
254
.
6.
Lang
,
J.
,
Santhanam
,
S.
, and
Wu
,
Q.
,
2017
, “
Exact and Approximate Solutions for Transient Squeezing Flow
,”
Phys. Fluids
,
29
(
10
), p.
103606
.
7.
Stefan
,
J.
,
1875
, “
Versuche Über Die Scheinbare Adhäsion
,”
Ann. Phys.
,
230
(
2
), pp.
316
318
.
8.
Leider
,
P. J.
, and
Bird
,
R. B.
,
1974
, “
Squeezing Flow Between Parallel Disks—Part I: Theoretical Analysis
,”
Ind. Eng. Chem. Res.
,
13
(
4
), pp.
336
341
.
9.
Laun
,
H. M.
,
Rady
,
M.
, and
Hassager
,
O.
,
1999
, “
Analytical Solutions for Squeeze Flow With Partial Wall Slip
,”
J. Non-Newtonian Fluid Mech.
,
81
(
1–2
), pp.
1
15
.
10.
Scheidl
,
R.
, and
Gradl
,
C.
,
2016
, “
An Approximate Computational Method for the Fluid Stiction Problem of Two Separating Parallel Plates With Cavitation
,”
ASME J. Fluids Eng.
,
138
(
6
), p.
61301
.
11.
Roemer
,
D. B.
,
Johansen
,
P.
,
Pedersen
,
H. C.
, and
Andersen
,
T. O.
,
2015
, “
Fluid Stiction Modeling for Quickly Separating Plates Considering the Liquid Tensile Strength
,”
ASME J. Fluids Eng.
,
137
(
6
), p.
61205
.
12.
Livesey
,
J. L.
,
1960
, “
Inertia Effects in Viscous Flows
,”
Int. J. Mech. Sci.
,
1
(
1
), pp.
84
88
.
13.
Kuzma
,
D. C.
,
Maki
,
E. R.
, and
Donnelly
,
R. J.
,
1964
, “
The Magnetohydrodynamic Squeeze Film
,”
J. Fluid Mech.
,
19
(
3
), pp.
395
400
.
14.
Tichy
,
J. A.
, and
Winer
,
W. O.
,
1970
, “
Inertial Considerations in Parallel Circular Squeeze Film Bearings
,”
ASME J. Lubr. Technol.
,
92
(
4
), pp.
588
592
.
15.
Shirodkar
,
P.
, and
Middleman
,
S.
,
1982
, “
Lubrication Flows in Viscoelastic Liquids—Part I: Squeezing Flow Between Approaching Parallel Rigid Planes
,”
J. Rheol.
,
26
(
1
), pp.
1
17
.
16.
Temis
,
M.
, and
Lazarev
,
A.
,
2018
, “
Influence of Centrifugal Forces on Oil Flow in Journal Bearing of Planetary Gear
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021109
.
17.
Jackson
,
J. D.
,
1963
, “
A Study of Squeezing Flow
,”
Appl. Sci. Res., Sect. A
,
11
(
1
), pp.
148
152
.
18.
Weinbaum
,
S.
,
Lawrence
,
C. J.
, and
Kuang
,
Y.
,
1985
, “
The Inertial Draining of a Thin Fluid Layer Between Parallel Plates With a Constant Normal Force—Part 1: Analytic Solutions; Inviscid and Small-But Finite-Reynolds-Number Limits
,”
J. Fluid Mech.
,
156
(
1
), pp.
463
477
.
19.
Hamza
,
E. A.
, and
MacDonald
,
D. A.
,
1981
, “
A Fluid Film Squeezed Between Two Parallel Plane Surfaces
,”
J. Fluid Mech.
,
109
(
1
), pp.
147
160
.
20.
Moss
,
E. A.
,
Krassnokutski
,
A.
,
Skews
,
B. W.
, and
Paton
,
R. T.
,
2011
, “
Highly Transient Squeeze-Film Flows
,”
J. Fluid Mech.
,
671
, pp.
384
398
.
21.
Ishizawa
,
S.
,
1966
, “
The Unsteady Laminar Flow Between Two Parallel Discs With Arbitrarily Varying Gap Width
,”
Bull. JSME
,
9
(
35
), pp.
533
550
.
22.
Jones
,
A. F.
, and
Wilson
,
S. D. R.
,
1975
, “
On the Failure of Lubrication Theory in Squeezing Flows
,”
ASME J. Lubr. Technol.
,
97
(
1
), pp.
101
104
.
23.
Wang
,
C.-Y.
,
1976
, “
The Squeezing of a Fluid Between Two Plates
,”
ASME J. Appl. Mech.
,
43
(
4
), pp.
579
583
.
24.
Grimm
,
R. J.
,
1976
, “
Squeezing Flows of Newtonian Liquid Films an Analysis Including Fluid Inertia
,”
Appl. Sci. Res.
,
32
(
2
), pp.
149
166
.
25.
Lawrence
,
C. J.
,
Kuang
,
Y.
, and
Weinbaum
,
S.
,
1985
, “
The Inertial Draining of a Thin Fluid Layer Between Parallel Plates With a Constant Normal Force—Part 2: Boundary Layer and Exact Numerical Solutions
,”
J. Fluid Mech.
,
156
(
1
), pp.
479
494
.
26.
Phan-Thien
,
N.
,
Sugeng
,
F.
, and
Tanner
,
R. I.
,
1987
, “
The Squeeze-Film Flow of a Viscoelastic Fluid
,”
J. Non-Newtonian Fluid Mech.
,
24
(
1
), pp.
97
119
.
27.
Yang
,
S. M.
, and
Leal
,
L. G.
,
1993
, “
Thin Fluid Film Squeezed With Inertia Between Two Parallel Plane Surfaces
,”
ASME J. Tribol.
,
115
(
4
), pp.
632
639
.
28.
Hamza
,
E. A.
,
1999
, “
Impulsive Squeezing With Suction and Injection
,”
ASME J. Appl. Mech.
,
66
(
4
), pp.
945
951
.
29.
Stolarski
,
T. A.
, and
Chai
,
W.
,
2008
, “
Inertia Effect in Squeeze Film Air Contact
,”
Tribol. Int.
,
41
(
8
), pp.
716
723
.
30.
Cui
,
W.
,
Miles
,
R. N.
, and
Homentcovsci
,
D.
,
2009
, “
The Effect of Shape and Distribution of Perforations on Squeeze-Film Damping in Parallel Plate Capacitors
,”
ASME
Paper No. DETC2009-87563.
31.
Zueco
,
J.
, and
Bég
,
O. A.
,
2010
, “
Network Numerical Analysis of Hydromagnetic Squeeze Film Flow Dynamics Between Two Parallel Rotating Disks With Induced Magnetic Field Effects
,”
Tribol. Int.
,
43
(
3
), pp.
532
543
.
32.
Munawar
,
S.
,
Mehmood
,
A.
, and
Ali
,
A.
,
2012
, “
Three-Dimensional Squeezing Flow in a Rotating Channel of Lower Stretching Porous Wall
,”
Comput. Math. Appl.
,
64
(
6
), pp.
1575
1586
.
33.
Hayat
,
T.
,
Qayyum
,
A.
, and
Alsaedi
,
A.
,
2013
, “
MHD Unsteady Squeezing Flow Over a Porous Stretching Plate
,”
Eur. Phys. J. Plus
,
128
(
12
), p.
157
.
34.
Qayyum
,
M.
,
Khan
,
H.
,
Rahim
,
M. T.
, and
Ullah
,
I.
,
2015
, “
Analysis of Unsteady Axisymmetric Squeezing Fluid Flow With Slip and No-Slip Boundaries Using OHAM
,”
Math. Probl. Eng.
,
2015
, p.
860857
.
35.
Azimi
,
M.
, and
Mozaffari
,
A.
,
2015
, “
Heat Transfer Analysis of Unsteady Graphene Oxide Nanofluid Flow Using a Fuzzy Identifier Evolved by Genetically Encoded Mutable Smart Bee Algorithm
,”
Eng. Sci. Technol. Int. J.
,
18
(
1
), pp.
106
123
.
36.
Muhammad
,
T.
,
Hayat
,
T.
,
Alsaedi
,
A.
, and
Qayyum
,
A.
,
2017
, “
Hydromagnetic Unsteady Squeezing Flow of Jeffrey Fluid Between Two Parallel Plates
,”
Chin. J. Phys.
,
55
(
4
), pp.
1511
1522
.
37.
Segur
,
J. B.
,
1953
, Physical Properties of Glycerol and Its Solutions, Glycerine Producers' Association New York.
38.
Phillips
,
R. W.
,
1969
, “
Engineering Applications of Fluids With a Variable Yield Stress
,” Ph.D. dissertation, University of California, Berkeley, CA.
39.
Jolly
,
M. R.
, and
Carlson
,
J. D.
,
1996
, “
Controllable Squeeze Film Damping Using Magnetorheological Fluid
,”
Fifth International Conference on New Actuators
, Bremen, Germany, pp.
333
336
.
40.
Resch
,
M.
, and
Scheidl
,
R.
,
2014
, “
A Model for Fluid Stiction of Quickly Separating Circular Plates
,”
Proc. Inst. Mech. Eng., Part C
,
228
(
9
), pp.
1540
1556
.
You do not currently have access to this content.