The flow behavior through the vented channel of a brake disk determines its thermal performance, viz. its resistance to brake fade, brake wear, thermal distortion, and thermal cracking. We present experimental results of the flow characteristics inside the vented channel of a radial vane brake rotor with a selected number of vanes (i.e., 18, 36, and 72) but constant porosity (ε ∼ 0.8) at low rotational speeds (i.e., 25 rpm ≤ N ≤ 400 rpm). Using bulk flow and velocity field mapping measurement techniques, we observed that increasing the number of vanes for a given rotational speed results in (i) the increase in the mass flow rate of the air pumped by the rotor, (ii) the reduction of inflow angle (β) becoming more closely aligned with the vanes, (iii) more uniformly distributed passage velocity profiles, and (iv) increased Rossby number. In addition, for a certain range of rotational speeds (i.e., 100 rpm ≤ N ≤ 400 rpm), we identified the biased development of streamwise secondary flow structures in the vented passages that only form on the inboard side of the rotor. This is due to the entry conditions where the incoming flow must transition sharply from the axial to the radial direction as air is drawn into the rotating channel. The biased secondary flow is likely to cause uneven cooling of the brake rotor, leading to thermal distortion. At lower rotational speeds (i.e., N < 100 rpm), the biased secondary flows transitions into a symmetric structure.

References

References
1.
Johnson
,
D. A.
,
Sperandei
,
B. A.
, and
Gilbert
,
R.
,
2003
, “
Analysis of the Flow Through a Vented Automotive Brake Rotor
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
979
989
.
2.
Parish
,
D.
, and
MacManus
,
D. G.
,
2005
, “
Aerodynamic Investigations of Ventilated Brake Discs
,”
Proc. Inst. Mech. Eng., Part D
,
219
(
4
), pp.
471
486
.
3.
Daudi
,
A. R.
,
1998
, “
Hayes High Airflow Design Rotor for Improved Thermal Cooling and Coning
,”
SAE Paper No. 982248
.
4.
Mew
,
T. D.
,
Kang
,
K. J.
,
Kienhöfer
,
F. W.
, and
Kim
,
T.
,
2015
, “
Transient Thermal Response of a Highly Porous Ventilated Brake Disc
,”
Proc. Inst. Mech. Eng., Part D
,
229
(
6
), pp.
674
683
.
5.
Limpert
,
R.
,
1975
, “
The Thermal Performance of Automotive Disc Brakes
,”
SAE
Paper No. 750873
.
6.
Limpert
,
R.
,
1975
, “
Cooling Analysis of Disc Brake Rotors
,”
SAE
Paper No. 751014
.
7.
Abbas
,
S. A.
,
Cubitt
,
N. J.
, and
Hooke
,
C. J.
,
1969
, “
Temperature Distributions in Disc Brakes
,”
Proc. Inst. Mech. Eng.
,
184
(
9
), pp.
185
194
.
8.
Palmer
,
E.
,
Mishra
,
R.
, and
Fieldhouse
,
J.
,
2008
, “
A Computational Fluid Dynamic Analysis on the Effect of Front Row Pin Geometry on the Aerothermodynamic Properties of a Pin-Vented Brake Disc
,”
Proc. Inst. Mech. Eng., Part D
,
222
(
7
), pp.
1231
1245
.
9.
Jacko
,
M. G.
,
1978
, “
Physical and Chemical Changes of Organic Disc Pads in Service
,”
Wear
,
46
(
1
), pp.
163
175
.
10.
Parker
,
R.
, and
Newcomb
,
T. P.
,
1964
, “
The Performance and Characteristics of the Disc Brake
,”
SAE
Paper No. 640140
.
11.
Newcomb
,
T. P.
, and
Spurr
,
R. T.
,
1967
,
Braking of Road Vehicles
,
Chapman and Hall
,
London
, p.
152
.
12.
Mortimer
,
R. G.
,
Segel
,
L.
, and
Dugoff
,
H.
,
1970
, “
Brake Force Requirement Study: Driver-Vehicle Braking Performance as a Function of Brake System Design Variables
,” Highway Safety Research Institute, Ann Arbor, MI, Report No.
HuF-6a
.https://deepblue.lib.umich.edu/handle/2027.42/1328
13.
Talati
,
F.
, and
Jalalifar
,
S.
,
2009
, “
Analysis of Heat Conduction in a Disk Brake System
,”
Heat Mass Transfer
,
45
(
8
), pp.
1047
1059
.
14.
Okamura
,
T.
, and
Yumoto
,
H.
,
2006
, “
Fundamental Study on Thermal Behaviour of Brake Discs
,”
SAE
Paper No. 2006-01-3203
.
15.
Sheridan
,
D. C.
,
Kutchey
,
J. A.
, and
Samie
,
F.
,
1988
, “
Approaches to the Thermal Modeling of Disc Brakes
,”
SAE
Paper No. 880256
.
16.
Palmer
,
E.
,
Mishra
,
R.
, and
Fieldhouse
,
J.
,
2009
, “
An Optimization Study of a Multiple Row Pin Vented Brake Disc to Promote Brake Cooling Using Computational Fluid Dynamics
,”
Proc. Inst. Mech. Eng., Part D
,
223
(
7
), pp.
865
875
.
17.
Belhocine
,
A.
, and
Omar
,
W. Z. W.
,
2018
, “
CFD Analysis of the Brake Disc and the Wheel House Through Airflow: Predictions of Surface Heat Transfer Coefficient (SHTC) During Braking Operation
,”
J. Mech. Sci. Technol.
,
32
(
1
), pp.
481
490
.
18.
Wallis
,
L. M.
,
2003
, “
A Comparison of Bi-Directional Disc Brake Rotor Passage Designs
,” Ph.D. dissertation, The University of New South Wales, Sydney, Australia.
19.
Wallis
,
L.
,
Leonardi
,
E.
,
Milton
,
B.
, and
Joseph
,
P.
,
2002
, “
Air Flow and Heat Transfer in Ventilated Disc Brake Rotors With Diamond and Tear Drop Pillars
,”
Numer. Heat Transfer, Part A
,
41
(
6–7
), pp.
643
655
.
20.
Rothe
,
P. H.
, and
Johnson
,
J. P.
,
1976
, “
Effects of System Rotation on the Performance of Two-Dimensional Diffusers
,”
ASME J. Fluids Eng.
,
98
(
3
), pp.
422
429
.
21.
Sturge
,
D. P.
, and
Cumpsty
,
N. A.
,
1975
, “
Two-Dimensional Method for Calculating Separated Flow in a Centrifugal Impeller
,”
ASME J. Fluids Eng.
,
97
(
4
), pp.
581
597
.
22.
Moore
,
J.
,
1973
, “
A Wake and Eddy in a Rotating, Radial-Flow Passage—Part 1: Experimental Observations
,”
ASME J. Eng. Power
,
95
(
3
), pp.
205
212
.
23.
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2005
, “
Contribution of Vortex Structures and Flow Separation to Local and Overall Pressure and Heat Transfer Characteristics in an Ultralightweight Lattice Material
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
4243
4264
.
24.
Galindo-Lopez
,
C. H.
, and
Tirovic
,
M.
,
2007
, “
Air Flow and Heat Dissipation Analysis of Commercial Vehicle Brake Discs
,”
11th European Automotive Congress (EAEC)
, Budapest, Hungary, May 30–June 1, Paper No. CV06-3.
25.
Gerrard
,
M. D.
,
1993
, “
Thermal Distortion of Ventilated Brake Discs
,”
M.Sc. thesis
, Durham University, Durham, UK.http://etheses.dur.ac.uk/5744/
26.
Daudi
,
A. R.
,
1999
, “
72 Curved Fin Rotor Design Reduces Maximum Rotor Temperature
,”
SAE
Paper No. 1999-01-3395
.
27.
Belhocine
,
A.
,
2017
, “
FE Prediction of Thermal Performance and Stresses in an Automotive Disc Brake System
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9–12
), pp.
3563
3578
.
28.
Lakshminarayana
,
B.
,
1996
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York
, p.
654
.
29.
Johnson
,
J. P.
,
1974
, “
The Effects of Rotation on Boundary Layers in Turbomachine Rotors
,” Fluid Mechanics, Acoustics and Design of Turbomachinery, NASA SP-304, Part I, pp. 207–249.
30.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2004
,
Internal Flow Concepts and Applications
,
Cambridge University Press
,
Cambridge, UK
, pp.
368
378
.
31.
Qian
,
C.
,
2002
, “
Aerodynamic Shape Optimization Using CFD Parametric Model With Brake Cooling Application
,”
SAE
Paper No. 2002-01-0599
.
32.
Sakamoto
,
H. J.
,
2004
, “
Heat Convection and Design of Brake Disc
,”
Proc. Inst. Mech. Eng., Part F
,
218
(
3
), pp.
203
212
.
33.
Galindo-Lopez
,
C. H.
,
2009
, “
Optimisation of Convective Heat Dissipation From Ventilated Brake Discs
,”
Ph.D. dissertation
, School of Applied Sciences, Cranfield University, Cranfield, UK.https://dspace.lib.cranfield.ac.uk/handle/1826/9196
34.
Sisson
,
A. E.
,
1978
, “
Thermal Analysis of Vented Brake Rotors
,”
SAE
Paper No. 780352
.
35.
Ower
,
E.
, and
Pankhurst
,
R. C.
,
1966
,
The Measurement of Air Flow
,
Pergamon Press
,
Oxford, UK
, p.
204
.
36.
Vanyo
,
J. P.
,
1993
,
Rotating Fluids in Engineering and Science
,
Butterworth-Hienemann
,
Boston, MA
, pp.
119
120
.
37.
Holman
,
J. P.
,
2001
,
Experimental Methods for Engineers
, Vol.
51
,
McGraw-Hill
,
New York
, p.
6
.
38.
Westerweel
,
J.
,
1997
, “
Fundamentals of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1379
392
.
39.
Westerweel
,
J.
,
2000
, “
Theoretical Analysis of the Measurement Precision in Particle Image Velocimetry
,”
J. Exp. Fluids
,
29
(
7
), pp.
S003
S012
.
40.
Westerweel
,
J.
,
2008
, “
On Velocity Gradients in PIV Interrogation
,”
Exp. Fluids
,
44
(
5
), pp.
831
842
.
41.
Yan
,
H. B.
,
Mew
,
T.
,
Lee
,
M. G.
,
Kang
,
K. J.
,
Lu
,
T. J.
,
Kienhöfer
,
F. W.
, and
Kim
,
T.
,
2015
, “
Thermofluidic Characteristics of a Porous Ventilated Brake Disk
,”
ASME J. Heat Transfer
,
137
(
2
), p.
022601
.
42.
Batchelor
,
G. K.
,
2000
,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
, p.
290
.
43.
Whitfield
,
A.
,
1990
, “
Preliminary Design and Performance Prediction Techniques for Centrifugal Compressors
,”
Proc. Inst. Mech. Eng., Part A
,
204
(
2
), pp.
131
144
.
44.
White
,
F. M.
,
2003
,
Fluid Mechanics
,
5th ed.
,
McGraw-Hill Book Company
,
New York
, p.
752
.
45.
Massey
,
B. S.
,
1989
,
Mechanics of Fluids
,
6th ed.
,
Van Nostrand Reinhold (International)
,
Cornwall, UK
, p.
537
.
46.
Cohen
,
H.
,
Rogers
,
G. F. C.
, and
Saravanamuttoo
,
H. I. H.
,
1996
,
Gas Turbine Theory
,
4th ed.
,
Longman Group Limited
,
Harlow, UK
, p.
128
.
You do not currently have access to this content.