The impeller–volute tongue interaction strongly influences the aerodynamic performance of squirrel cage fan. To quantitatively evaluate the level of impeller–volute tongue interaction, we propose two parameters, i.e., recirculated flow coefficient and reversed flow coefficient based on a careful inspection of flow pattern near the volute tongue of a squirrel cage fan. Inspired by the good aerodynamic characteristics of owl wing, particular effort is made to develop a bionic design of volute tongue to improve the impeller–volute tongue match. The aerodynamic performances of both the squirrel cage fans with original volute tongue (OVT) and bionic volute tongue (BVT) are numerically and experimentally analyzed. The results show that, by employing the bionic design of volute tongue, the squirrel cage fan can achieve higher aerodynamic performance than that with OVT. Better match between impeller and volute tongue is obtained with smaller recirculated flow coefficient and reversed flow coefficient, validating the effectiveness of the proposed parameters to quantitatively evaluate the level of impeller–volute tongue interaction. In addition, the bionic design of volute tongue is beneficial for the improvement of flow quality and for the relief of abrupt pressure variation and axial nonuniformity of flow near the volute tongue. This work is helpful for a deep understanding of complex flow pattern in squirrel cage fan.

References

1.
Cau
,
G.
,
Mandas
,
N.
,
Manfrida
,
G.
, and
Nurzia
,
F.
,
1987
, “
Measurements of Primary and Secondary Flows in an Industrial Forward-Curved Centrifugal Fan
,”
ASME J. Fluids Eng.
,
109
(
4
), pp.
353
358
.
2.
Bleier
,
F. P.
,
1997
,
Fan Handbook: Selection, Application, and Design
,
McGraw-Hill
,
New York
.
3.
Velarde-Suárez
,
S.
,
Ballesteros-Tajadura
,
R.
,
Santolaria-Morros
,
C.
, and
Pereiras-García
,
B.
,
2008
, “
Reduction of the Aerodynamic Tonal Noise of a Forward-Curved Centrifugal Fan by Modification of the Volute Tongue Geometry
,”
Appl. Acoust.
,
69
(
3
), pp.
225
232
.
4.
Meakhail
,
T.
, and
Park
,
S. O.
,
2005
, “
A Study of Impeller-Diffuser-Volute Interaction in a Centrifugal Fan
,”
ASME J. Turbomach.
,
127
(
1
), pp.
84
90
.
5.
Younsi
,
M.
,
Bakir
,
F.
,
Kouidri
,
S.
, and
Rey
,
R.
,
2007
, “
Numerical and Experimental Study of Unsteady Flow in a Centrifugal Fan
,”
Proc. Inst. Mech. Eng. Part A
,
221
(
7
), pp.
1025
1036
.
6.
Jeong
,
J. H.
,
2017
, “
Analysis of Vortical Flow Field Related to Aero-Acoustic Sound in an Air Conditioning System by Wall Pressure Measurement and CFD (1st Report, Resonance in a Duct)
,”
J. Mech. Sci. Technol.
,
31
(
3
), pp.
1259
1266
.
7.
Jeong
,
J. H.
,
2017
, “
Analysis of Vortical Flow Field Related to Aero-Acoustic Sound in an Air Conditioning System by Wall Pressure Measurement and CFD (2nd Report, Blade Passing Frequency in a Blower)
,”
J. Mech. Sci. Technol.
,
31
(
5
), pp.
2365
2371
.
8.
Wang
,
K.
,
Ju
,
Y. P.
, and
Zhang
,
C. H.
,
2018
, “
Numerical Investigation on Flow Mechanisms of Squirrel Cage Fan
,”
Proc. Inst. Mech. Eng. Part A
, (epub).
9.
Fernández Oro
,
J. M.
,
Pereiras García
,
B.
,
González
,
J.
,
Argüelles Díaz
,
K. M.
, and
Velarde-Suárez
,
S.
,
2013
, “
Numerical Methodology for the Assessment of Relative and Absolute Deterministic Flow Structures in the Analysis of Impeller-Tongue Interactions for Centrifugal Fans
,”
Comput. Fluids
,
86
, pp.
310
325
.
10.
Xiao
,
M. N.
,
Xiao
,
Q.
,
Dou
,
H. S.
,
Ma
,
X. Y.
,
Chen
,
Y. N.
,
He
,
H.
, and
Ye
,
X.
,
2016
, “
Study of Flow Instability in a Centrifugal Fan Based on Energy Gradient Theory
,”
J. Mech. Sci. Technol.
,
30
(
2
), pp.
507
517
.
11.
Ju
,
Y. P.
,
Zhang
,
C. H.
, and
Chi
,
X. L.
,
2012
, “
Optimization of Centrifugal Impellers for Uniform Discharge Flow and Wide Operating Range
,”
J. Propuls. Power
,
28
(
5
), pp.
888
899
.
12.
Velarde-Suárez
,
S.
,
Ballesteros-Tajadura
,
R.
,
Pérez
,
J. G.
, and
Pereiras-García
,
B.
,
2009
, “
Relationship Between Volute Pressure Fluctuation Pattern and Tonal Noise Generation in a Squirrel-Cage Fan
,”
Appl. Acoust.
,
70
(
11–12
), pp.
1384
1392
.
13.
Jung
,
Y.
, and
Baek
,
J.
,
2008
, “
A Numerical Study on the Unsteady Flow Behavior and the Performance of an Automotive Sirocco Fan
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1889
1895
.
14.
Han
,
S. Y.
, and
Maeng
,
J. S.
,
2003
, “
Shape Optimization of Cut-Off in a Multiblade Fan/Scroll System Using Neural Network
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2833
2839
.
15.
Han
,
S. Y.
,
Maeng
,
J. S.
, and
Yoo
,
D. H.
,
2003
, “
Shape Optimization of Cutoff in a Multiblade Fan/Scroll System Using Response Surface Methodology
,”
Numer. Heat Transfer Part B.
,
43
(
1
), pp.
87
98
16.
Kim
,
K. Y.
, and
Seo
,
S. J.
,
2004
, “
Shape Optimization of Forward-Curved-Blade Centrifugal Fan With Navier-Stokes Analysis
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
735
742
.
17.
Heo
,
M. W.
,
Kim
,
J. H.
,
Seo
,
T. W.
, and
Kim
,
K. Y.
,
2016
, “
Aerodynamic and Aeroacoustic Optimization for Design of a Forward-Curved Blades Centrifugal Fan
,”
Proc. Inst. Mech. Eng. Part A
,
230
(
2
), pp.
154
174
.
18.
Winzen
,
A.
,
Roidl
,
B.
, and
Schröder
,
W.
,
2015
, “
Particle-Image Velocimetry Investigation of the Fluid-Structure Interaction Mechanisms of a Natural Owl Wing
,”
Bioinspir. Biomim
,
10
(
5
), p.
056009
.
19.
Weger
,
H.
,
Weger
,
M.
,
Klaas
,
M.
, and
Schröder
,
W.
,
2017
, “
Features of Owl Wings That Promote Silent Flight
,”
Interface Focus
,
7
(
1
), p.
20160078
.
20.
Liu
,
T. S.
,
Kuykendoll
,
K.
,
Rhew
,
R.
, and
Jones
,
S.
,
2006
, “
Avian Wing Geometry and Kinematics
,”
AIAA J.
,
44
(
5
), pp.
954
963
.
21.
Klän
,
S.
,
Bachmann
,
T.
,
Klaas
,
M.
,
Wagner
,
H.
, and
Schröder
,
W.
,
2009
, “
Experimental Analysis of the Flow Field Over a Novel Owl Based Airfoil
,”
Exp. Fluids
,
46
(
5
), pp.
975
989
.
22.
Kondo
,
K.
,
Aono
,
H.
,
Nonomura
,
T.
,
Oyama
,
A.
,
Fujii
,
K.
, and
Yamamoto
,
M.
,
2013
, “
Large-Eddy Simulations of Owl-Like Wing Under Low Reynolds Number Conditions
,”
ASME
Paper No. FEDSM2013-16377
.
23.
Wen
,
X. F.
,
Mao
,
Y. J.
,
Yang
,
X.
, and
Qi
,
D. T.
,
2016
, “
Design Method for the Volute Profile of a Squirrel Cage Fan With Space Limitation
,”
ASME J. Turbomach.
,
138
(
8
), p.
081001
.
24.
ANSYS CFX-15
,
2012
, “ANSYS CFX-Solver Theory Guide,” ANSYS, Canonsburg, PA.
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
26.
Darvish
,
M.
, and
Frank
,
S.
,
2012
, “
Toward the CFD Simulation of Sirocco Fans: From Selecting a Turbulence Model to the Role of Cell Shapes
,”
International Conference on Fan Noise, Technology and Numerical Methods (Fan 2012)
, Senlis, France, Apr. 18–20.
27.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “
Turbulence Modeling Validation
,”
AIAA
Paper No. 1997-2121
.
28.
Darvish
,
M.
,
Frank
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Numerical and Experimental Study on the Tonal Noise Generation of a Radial Fan
,”
ASME J. Turbomach.
,
137
(
10
), p.
101005
.
29.
Kind
,
R. J.
,
1997
, “
Prediction of Flow Behavior and Performance of Squirrel-Cage Centrifugal Fans Operating at Medium and High Flow Rates
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
639
646
.
30.
Riegels
,
F. W.
,
1961
,
Aerofoil Sections
,
Butterworths
,
London
.
31.
Rezaei Niya
,
S. M.
,
Montazerin
,
N.
,
Damangir
,
A.
, and
Dehkordi
,
A. H.
,
2006
, “
Performance and Laser Doppler Anemometry Experimental Investigation of Squirrel Cage Fans With Half-Cone Rotors
,”
Proc. Inst. Mech. Eng. Part A
,
220
(
7
), pp.
753
763
.
32.
Nikkhoo
,
M.
,
Montazerin
,
N.
,
Damangir
,
A.
, and
Samian
,
R. S.
,
2009
, “
An Experimental Study of Leaning Blades on the Half-Cone Rotor of a Squirrel Cage Fan
,”
Proc. Inst. Mech. Eng. Part A
,
223
(
8
), pp.
973
980
.
33.
International Standard Organization (ISO),
2011
, “
Structural Steels—Part 2: Technical Delivery Conditions for Structure Steel for General Purpose
,” British Standards Institution, London, Standard No.
ISO 630-2-2011
.https://www.iso.org/standard/52322.html
34.
Chen
,
H. J.
,
2003
,
Handbook of Practical Machining Technology
,
China Machine Press
,
Beijing, China
.
35.
International Standard Organization (ISO),
1997
, “
Gometrical Product Specifications (GPS), Surface Texture: Profile Method, Terms, Definitions and Surface Texture Parameters
,” British Standards Institution, London, Standard No.
ISO 4287-1997
.https://www.iso.org/standard/10132.html
36.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
37.
Cousins
,
W. T.
,
Yu
,
L.
,
Garofano
,
J.
,
Botros
,
B.
,
Sishtla
,
V.
, and
Sharma
,
O.
,
2014
, “
Test and Simulation of the Effects of Surface Roughness on a Shrounded Centrifugal Impeller
,”
ASME
Paper No. GT2014-25480
.
38.
ISO,
Fans for General Purpose—Part 1: Performance Testing Using Standardized Airways
,” British Standards Institution, London, Standard No.
ISO 5801-1997
.https://shop.bsigroup.com/ProductDetail/?pid=000000000001062051
You do not currently have access to this content.