In previous works, the authors presented computational fluid dynamics (CFD) results, which showed that injectors with noticeably steeper nozzle and needle tip angles 110 deg & 70 deg and 150 deg & 90 deg, respectively, attain higher efficiency than the industry standard, which, according to available literature on the public domain, ranges from 80 deg to 90 deg for nozzle and 50–60 deg for needle tip angles. Moreover, experimental testing of the entire Pelton system showed that gains of about 1% in efficiency can be achieved; however there appears to be an upper limit beyond which steeper designs are no longer optimal. This study aims at providing further insight by presenting additional CFD analysis of the runner, which has been coupled with the jet profile from the aforementioned injectors. The results are compared by examining the impact the jet shape has on the runner torque profile during the bucket cycle and the influence this has on turbine efficiency. It can be concluded that the secondary velocities, which contribute to the development of more significant free-surface degradations as the nozzle and needle tip angles are increased, result in a nonoptimal jet runner interaction.

References

References
1.
Brocchini
,
M.
, and
Peregrine
,
D. H.
,
2001
, “
The Dynamics of Strong Turbulence at Free Surfaces—Part 1: Description
,”
J. Fluid Mech.
,
449
, pp.
225
254
.
2.
Busker
,
D. P.
, and
Lamers
,
A. P.
,
1989
, “
The Non-Linear Breakup of an Inviscid Liquid Jet
,”
Fluid Dyn. Res.
,
5
(
3
), pp.
159
172
.
3.
McCarthy
,
M. J.
, and
Molloy
,
N. A.
,
1974
, “
Review of Stability of Liquid Jets and the Influence of Nozzle Design
,”
Chem. Eng. J.
,
7
(
1
), pp.
1
20
.
4.
Birouk
,
M.
, and
Lekic
,
N.
,
2009
, “
Liquid Jet Breakup in Quiescent Atmosphere: A Review
,”
Atomization Sprays
,
19
(
6
), pp.
501
528
.
5.
Narasimha
,
R.
, and
Sreenivasan
,
K. R.
,
1979
, “
Relaminarization of Fluid Flows
,”
Adv. Appl. Mech.
,
19
, pp.
221
309
.
6.
Hoyt
,
J. W.
, and
Taylor
,
J. J.
,
1977
, “
Waves on Water Jets
,”
J. Fluid Mech.
,
83
(
1
), pp.
119
127
.
7.
Staubli
,
T.
, and
Hauser
,
H. P.
,
2004
, “
Flow Visualization—A Diagnosis Tool for Pelton Turbines
,”
International Conference on Hydraulic Efficiency Measurements
, Lucerne, Switzerland, July 14–16, pp. 1–9.https://www.researchgate.net/publication/237302803_FLOW_VISUALIZATION_-_A_DIAGNOSIS_TOOL_FOR_PELTON_TURBINES
8.
Peron
,
M.
,
Parkinson
,
E.
,
Geppert
,
L.
, and
Staubli
,
T.
,
2008
, “
Importance of Jet Quality on Pelton Efficiency and Cavitation
,”
International Conference on Hydraulic Efficiency Measurements
, Milan, Italy, Sept. 3–6, pp. 1–9.
9.
Staubli
,
T.
,
Abgottspon
,
A.
,
Weibel
,
P.
,
Bissel
,
C.
,
Parkinson
,
E.
,
Leduc
,
J.
, and
Leboeuf
,
F.
,
2009
, “
Jet Quality and Pelton Efficiency
,”
Hydro
, Lyon, France, Oct. 26–28, pp. 1–9.https://www.researchgate.net/publication/290989838_Jet_quality_and_Pelton_efficiency
10.
Staubli
,
T.
,
Weibel
,
P.
,
Bissel
,
C.
,
Karakolcu
,
A.
, and
Bleiker
,
U.
,
2010
, “
Efficiency Increase by Jet Quality Improvements and Reduction of Splashing Water in the Casing of Pelton Turbines
,”
16th International Seminar on Hydropower Plants
, Vienna, Austria, Nov. 24–25.
11.
Zhang
,
Z.
, and
Casey
,
M.
,
2007
, “
Experimental Studies of the Jet of a Pelton Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
8
), pp.
1181
1192
.
12.
Gass
,
M.
,
2002
, “
Modification of Nozzles for the Improvement of Efficiency of Pelton Type Turbines
,” Hydrovision, Portland, OR, July 29–Aug. 2, pp. 1–7.
13.
Muggli
,
F.
,
Zhang
,
Z.
,
Schärer
,
C.
, and
Geppert
,
L.
,
2000
, “
Numerical and Experimental Analysis of Pelton Turbine Flow—Part 2: The Free Surface Jet Flow
,”
20th IAHR Symposium on Hydraulic Machinery and Systems
, Charlotte, NC, Aug. 6–9.
14.
Veselý
,
J. V.
, and
Varner
,
M.
,
2002
, “
A Case Study of Upgrading of 62.5 MW Pelton Turbine
,”
21st IAHR Symposium on Hydraulic Machinery and Systems
, Prague, Czech Republic, Sept. 9–12, pp. 1–10.http://davar.cz/corfat/pdf/A_case_study.pdf
15.
Benzon
,
D.
,
Zidonis
,
A.
,
Panagiotopoulos
,
A.
,
Aggidis
,
G.
,
Anagnostopoulos
,
J. S.
, and
Papantonis
,
D. E.
,
2014
, “
Impulse Turbine Injector Design Improvement Using Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041106
.
16.
Benzon
,
D.
,
Zidonis
,
A.
,
Panagiotopoulos
,
A.
,
Aggidis
,
G.
,
Anagnostopoulos
,
J. S.
, and
Papantonis
,
D. E.
,
2015
, “
Numerical Investigation of the Spear Valve Configuration on the Performance of Pelton and Turgo Turbine Injectors and Runners
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111201
.
17.
Zidonis
,
A.
,
Benzon
,
D. S.
,
Panagiotopoulos
,
A.
,
Petley
,
S.
,
Aggidis
,
G. A.
,
Anagnostopoulos
,
J. S.
, and
Papantonis
,
D. E.
,
2017
, “
Experimental Investigation and Analysis of the Spear Valve Design on the Performance of Pelton Turbines: 3 Case Studies
,”
Hydro 2017
, Seville, Spain, Oct. 9–11, pp. 1–15.https://www.researchgate.net/publication/320517926_Experimental_investigation_and_analysis_of_the_spear_valve_design_on_the_performance_of_Pelton_turbines_Three_case_studies
18.
Nechleba
,
M.
,
1957
,
Hydraulic Turbines: Their Design and Equipment
,
Artia
,
Prague, Czech Republic
.
19.
Benzon
,
D. S.
,
2016
, “
The Turgo Impulse Turbine; a CFD Based Approach to the Design Improvement With Experimental Validation
,” Ph.D. thesis, Lancaster University, Lancaster, UK.
20.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAAJ.
,
32
(
8
), pp.
1598
1605
.
21.
Zidonis
,
A.
,
2015
, “
Optimisation and Efficiency Improvement of Pelton Hydro Turbine Using Computational Fluid Dynamics and Experimental Testing
,”
Ph.D. thesis
, Lancaster University, Lancaster, UK.http://www.research.lancs.ac.uk/portal/en/publications/optimisation-and-efficiency-improvement-of-pelton-hydro-turbine-using-computational-fluid-dynamics-and-experimental-testing(6a524e4e-035d-4a0f-a1e6-e639a5a6c245)/export.html
22.
Zidonis
,
A.
, and
Aggidis
,
G.
,
2016
, “
Pelton Turbine: Identifying the Optimum Number of Buckets Using CFD
,”
J. Hydrodyn.
,
2
(
1
), pp.
75
83
.
23.
IEC
,
1999
, “
Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No. IEC 60193.
24.
Zeng
,
C.
,
Xiao
,
Y.
,
Luo
,
Y.
,
Zhang
,
J.
,
Wang
,
Z.
,
Fan
,
H.
, and
Ahn
,
S.-H.
,
2018
, “
Hydraulic Performance Prediction of a Prototype Four-Nozzle Pelton Turbine by Entire Flow Path Simulation
,”
Renewable Energy
,
125
, pp.
270
282
.
25.
Chongji
,
Z.
,
Yexiang
,
X.
,
Wei
,
X.
,
Tao
,
W.
,
Jin
,
Z.
, and
Zhengwei
,
W.
,
2016
, “
Numerical Analysis of Pelton Nozzle Jet Flow Behavior Considering Elbow Pipe
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
, p.
022005
.
26.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
27.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
28.
Perrig
,
A.
,
Avellan
,
F.
,
Kueny
,
J. L.
,
Farhat
,
M.
, and
Parkinson
,
E.
,
2006
, “
Flow in a Pelton Turbine Bucket: Numerical and Experimental Investigation
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
350
358
.
29.
Santolin
,
A.
,
Cavazzini
,
G.
,
Ardizzon
,
G.
, and
Pavesi
,
G.
,
2009
, “
Numerical Investigation of the Interaction Between Jet and Bucket in a Pelton Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
6
), pp.
721
728
.
You do not currently have access to this content.