In industrial applications, cryogenic liquids are sometimes used as the working fluid of fluid machineries. In those fluids, the thermodynamic suppression effect of cavitation, which is normally ignored in water at room temperature, becomes obvious. When evaporation occurs in the cavitation region, the heat is supplied from the surrounding liquid. Hence, the liquid temperature is decreased, and cavitation is suppressed due to the decrease in saturated vapor pressure. Therefore, the performance of the fluid machinery can be improved. Computational fluid dynamics, which involves the use of a homogeneous model coupled with a thermal transport equation, is a powerful tool for the prediction of cavitation under thermodynamic effects. In this study, a thermodynamic model for a homogeneous model is introduced. In this model, the source term related to the latent heat of phase change appears explicitly, and the degree of heat transfer rate for evaporation and condensation can be adjusted separately to suit the homogeneous model. Our simplified thermodynamic model coupled with the Merkle cavitation model was validated for cryogenic cavitation on a two-dimensional (2D) quarter hydrofoil. The results obtained during the validation showed good agreement (in both pressure and temperature profiles) with the experimental data and were better than existing numerical results obtained by other researchers.

References

References
1.
Hord
,
J.
,
1972
, “
Cavitation in Liquid Cryogens I—Venturi
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA CR-2054
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19720016713.pdf
2.
Hord
,
J.
,
1973
, “
Cavitation in Liquid Cryogens II—Hydrofoil
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA CR-2156
.https://ntrs.nasa.gov/search.jsp?R=19730007528
3.
Hord
,
J.
,
1973
, “
Cavitation in Liquid Cryogens III—Ogive
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA CR-2242
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730019421.pdf
4.
Franc
,
J.-P.
,
Rebattlet
,
C.
, and
Coulon
,
A.
,
2004
, “
An Experimental Investigation of Thermal Effects in a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
126
(
5
), pp.
716
723
.
5.
Cervone
,
A.
,
Bramanti
,
C.
,
Rapposelli
,
E.
, and
Agostino
,
L.
,
2006
, “
Thermal Cavitation Experiments on a NACA0015 Hydrofoil
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
326
331
.
6.
Petkovsek
,
M.
, and
Dulaz
,
M.
,
2013
, “
IR Measurements of the Thermodynamic Effects in Cavitating Flow
,”
Int. J. Heat Fluid Flow
,
44
, pp.
756
763
.
7.
Petkovsek
,
M.
, and
Dulaz
,
M.
,
2017
, “
Observing the Thermodynamic Effects in Cavitating Flow by IR Thermography
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
450
460
.
8.
Yamaguchi
,
Y.
, and
Iga
,
Y.
,
2014
, “
Thermodynamics Effects on Cavitation in High Temperature Water
,”
ASME
Paper No. FEDSM2014-21433.
9.
Iga
,
Y.
,
Ochiai
,
N.
,
Yoshida
,
Y.
, and
Ikohagi
,
T.
,
2009
, “
Numerical Investigation of Thermodynamic Effect on Unsteady Cavitation in Cascade
,”
Seventh International Symposium on Cavitation
, Ann Arbor, MI, Aug. 17–22, Paper No. CAV2009-78.https://deepblue.lib.umich.edu/handle/2027.42/84272
10.
Hosangadi
,
A.
, and
Ahuja
,
V.
,
2005
, “
Numerical Study of Cavitation in Cryogenic Fluids
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
267
281
.
11.
Utturkar
,
Y.
,
Wu
,
Y. J.
, and
Wang
,
Y. G.
,
2005
, “
Recent Progress in Modeling of Cryogenic Cavitation for Liquid Rocket Propulsion
,”
Prog. Aerosp. Sci.
,
41
(
7
), pp.
558
608
.
12.
Tseng
,
C.-C.
, and
Shyy
,
W.
,
2009
, “
Turbulence Modeling for Isothermal and Cryogenic Cavitation
,”
AIAA
Paper No. 2009-1215.
13.
Long
,
X.
,
Liu
,
Q.
,
Ji
,
B.
, and
Lu
,
Y.
,
2017
, “
Numerical Investigation of Two Typical Cavitation Shedding Dynamics Flow in Liquid Hydrogen With Thermodynamics Effects
,”
Int. J. Heat Mass Transfer
,
109
, pp.
879
893
.
14.
Xue
,
L.
,
Ruan
,
Y.
,
Liu
,
X.
,
Cao
,
F.
, and
Hou
,
Y.
,
2017
, “
The Influence of Cavitation on the Flow Characteristic of Liquid Nitrogen Through Spary Nozzle: A CFD Study
,”
Cryogenics
,
86
, pp.
24
56
.
15.
Chen
,
T.
,
Huang
,
B.
,
Wang
,
G.
, and
Zhao
,
X.
,
2016
, “
Numerical Study of Cavitating Flows in a Wide Range of Water Temperature With Special Emphasis on Two Typical Cavitation Dynamics
,”
Int. J. Heat Mass Transfer
,
101
, pp.
886
900
.
16.
Zhang
,
S.
,
Li
,
X.
, and
Zhu
,
Z.
,
2018
, “
Numerical Simulation of Cryogenic Cavitating Flow by an Extended Transport Based Cavitation Model With Thermal Effects
,”
Cryogenics
,
92
, pp.
98
104
.
17.
Tsuda
,
S.
,
Tani
,
N.
, and
Yamanishi
,
N.
,
2012
, “
Development and Validation of a Reduced Critical Radius Model for Cryogenic Cavitation
,”
ASME J. Fluids Eng.
,
134
(
5
), p.
051301
.
18.
Stepanoff
,
A. J.
,
1964
, “
Cavitation Properties of Liquids
,”
ASME J. Eng. Power
,
86
(
2
), pp.
195
200
.
19.
Iga
,
Y.
,
Nohmi
,
M.
,
Goto
,
A.
,
Shin
,
B. R.
, and
Ikohagi
,
T.
,
2003
, “
Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
643
651
.
20.
Iga
,
Y.
,
Nohmi
,
M.
,
Goto
,
A.
, and
Ikohagi
,
T.
,
2004
, “
Numerical Analysis of Cavitation Instabilities Arising in the Three-Blade Cascade
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
419
429
.
21.
Chen
,
H. T.
, and
Collins
,
R.
,
1971
, “
Shock Wave Propagation Past on Ocean Surface
,”
J. Comput. Phys.
,
7
(
1
), pp.
89
101
.
22.
Sugawara
,
S.
,
1993
, “
New Steam Table
,”
J. Jpn. Soc. Mech. Eng.
,
35
(
186
), pp.
999
1004
.
23.
Van Itterbeek
,
A.
,
Verbeke
,
O.
,
Theewes
,
F.
,
Staes
,
K.
, and
de Boelpaep
,
J.
,
1964
, “
The Difference in Vapour Pressure Between Normal and Equilibrium Hydrogen. Vapour Pressure of Normal Hydrogen Between 200K and 320K
,”
Physica
,
30
(
6
), pp.
1238
1244
.
24.
Wilcox
,
D. C.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries
, La Cañada Flintridge, CA.
25.
Beattie
,
D. R. H.
, and
Whally
,
P. B.
, “
A Simple Two-Phase Frictional Pressure Drop Calculation Method
,”
Int. J. Multiphase Flow
,
8
(
1
), pp.
83
87
.
26.
Karplus
,
H. B.
,
1957
, “
The Velocity of Sound in a Liquid Containing Gas Bubbles
,”
J. Acoust. Soc. Am.
,
29
(
11
), p. 1261.
27.
Maccormack
,
R. W.
,
1969
, “
The Effect of Viscosity in Hyper-Velocity Impact Cratering
,”
Fourth Aerodynamic Testing Conference
, Cincinnati, OH, April 30–May 2, pp.
69
354
.
28.
Yee
,
H. C.
,
1987
, “
Upwind and Symmetric Shock—Capturing Schemes
,” National Aeronautics and Space Administration, Ames Research Center Moffett Field, CA, Report No.
NASA-TM-89464
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19870014712.pdf
29.
Menter
,
F. R.
, and
Esch
,
T.
,
2001
, “
Elements of Industrial Heat Transfer Predictions
,”
16th Brazilian Congress of Mechanical Engineering (COBEM)
, Uberlandia, Brazil, Nov. 26–30, pp.
118
127
.
30.
Rouse
,
H.
, and
McNown
,
J. S.
,
1948
,
Cavitation and Pressure Distribution Head Forms at Zero Angle of Yaw
,
State University of Iowa
, Iowa City, IA.
31.
Hosangadi
,
A.
, and
Ahuja
,
V.
, “
A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids
,”
AIAA
Paper No. 2005-5347.
32.
Watanabe
,
S.
,
Hidaka
,
T.
,
Horiguchi
,
H.
,
Furukawa
,
A.
, and
Tsujimoto
,
Y.
,
2006
, “
Steady Analysis of the Thermodynamics Effect of Partial Cavitation Using the Singularity Method
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
121
127
.
33.
Anh
,
D. L.
, and
Iga
,
Y.
,
2017
, “
Simplified Modeling of Cavitating Flow With Thermodynamic Effects for Homogeneous Model
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Maui, HI, Dec. 16–21, p. 404.
You do not currently have access to this content.