The impact and bounce of a bubble with a solid surface is of significant interest to many industrial processes such as froth flotation and biomedical engineering. During the impact, a liquid film becomes trapped between the bubble and the solid surface. The pressure buildup in this film leads to the generation of a film force. The drainage rate of this film plays a crucial role in dictating the bouncing process and is known to be a function of the radial film size. However, radial film size is not an easily attained experimental measurement and requires advanced instrumentation to capture. The bouncing process has been characterized using nondimensional numbers that are representative of the bubble collision and film drainage phenomena. These are: Bond number (Bo), Archimedes number (Ar), Froude number (Fr), and the ratio of film force to buoyancy force (FF/FB). These numbers are used to define a predictive function for film radius. Experimentally validated numerical modeling has been implemented to determine the relationship between the four nondimensional numbers, and a quasi-static model is employed to relate the film force to the radial film size. Comparison of our experimental results is in agreement with the predicted film size within ±20%. From these results, the radial film size during bubble impact with a solid surface may be predicted using the easily measurable experimental parameters of bubble size, bubble impact velocity, and the liquid properties.

References

References
1.
Manica
,
R.
,
Klaseboer
,
E.
, and
Chan
,
D. Y. C.
,
2016
, “
The Hydrodynamics of Bubble Rise and Impact With Solid Surfaces
,”
Adv. Colloid Interface Sci.
,
235
, pp.
214
232
.
2.
Exerowa
,
D.
, and
Kruglyakov
,
P. M.
,
1997
,
Foam and Foam Films: Theory, Experiment, Application
,
Elsevier
, Amsterdam, The Netherlands, pp.
122
166
.
3.
Manica
,
R.
,
Parkinson
,
L.
,
Ralston
,
J.
, and
Chan
,
D. Y. C.
,
2010
, “
Interpreting the Dynamic Interaction Between a Very Small Rising Bubble and a Hydrophilic Titania Surface
,”
J. Phys. Chem. C
,
114
(
4
), pp.
1942
1946
.
4.
Hendrix
,
M. H. W.
,
Manica
,
R.
,
Klaseboer
,
E.
,
Chan
,
D. Y. C.
, and
Ohl
,
C.-D.
,
2012
, “
Spatiotemporal Evolution of Thin Liquid Films During Impact of Water Bubbles on Glass on a Micrometer to Nanometer Scale
,”
Phys. Rev. Lett.
,
108
(
24
), p.
247803
.
5.
Zhang
,
X.
,
Manica
,
R.
,
Tchoukov
,
P.
,
Liu
,
Q.
, and
Xu
,
Z.
,
2017
, “
Effect of Approach Velocity on Thin Liquid Film Drainage Between an Air Bubble and a Flat Solid Surface
,”
J. Phys. Chem. C
,
121
(
10
), pp.
5573
5584
.
6.
Zawala
,
J.
, and
Dabros
,
T.
,
2013
, “
Analysis of Energy Balance During Collision of an Air Bubble With a Solid Wall
,”
Phys. Fluids
,
25
(
12
), p.
123101
.
7.
Kosior
,
D.
,
Zawala
,
J.
,
Niecikowska
,
A.
, and
Malysa
,
K.
,
2015
, “
Influence of Non-Ionic and Ionic Surfactants on Kinetics of the Bubble Attachment to Hydrophilic and Hydrophobic Solids
,”
Colloids Surf. Physicochem. Eng. Asp.
,
470
, pp.
333
341
.
8.
Kosior
,
D.
,
Zawala
,
J.
, and
Malysa
,
K.
,
2014
, “
Influence of N-Octanol on the Bubble Impact Velocity, Bouncing and the Three Phase Contact Formation at Hydrophobic Solid Surfaces
,”
Colloids Surf. Physicochem. Eng. Asp.
,
441
pp.
788
795
.
9.
Krasowska
,
M.
, and
Malysa
,
K.
,
2007
, “
Kinetics of Bubble Collision and Attachment to Hydrophobic Solids—I: Effect of Surface Roughness
,”
Int. J. Miner. Process.
,
81
(
4
), pp.
205
216
.
10.
Tsao
,
H.
, and
Koch
,
D. L.
,
1997
, “
Observations of High Reynolds Number Bubbles Interacting With a Rigid Wall
,”
Phys. Fluids
,
9
(
1
), pp.
44
56
.
11.
Fujasová-Zedníková
,
M.
,
Vobecká
,
L.
, and
Vejrazka
,
J.
,
2010
, “
Effect of Solid Material and Surfactant Presence on Interactions of Bubbles With Horizontal Solid Surface
,”
Can. J. Chem. Eng.
,
88
(
4
), pp.
473
481
.
12.
Malysa
,
K.
,
Krasowska
,
M.
, and
Krzan
,
M.
,
2005
, “
Influence of Surface Active Substances on Bubble Motion and Collision With Various Interfaces
,”
Adv. Colloid Interface Sci.
,
114–115
, pp.
205
225
.
13.
Wang
,
L.
, and
Qu
,
X.
,
2012
, “
Impact of Interface Approach Velocity on Bubble Coalescence
,”
Miner. Eng.
,
26
, pp.
50
56
.
14.
Kirkpatrick
,
R. D.
, and
Lockett
,
M. J.
,
1974
, “
The Influence of Approach Velocity on Bubble Coalescence
,”
Chem. Eng. Sci.
,
29
(
12
), pp.
2363
2373
.
15.
Zawala
,
J.
, and
Malysa
,
K.
,
2011
, “
Influence of the Impact Velocity and Size of the Film Formed on Bubble Coalescence Time at Water Surface
,”
Langmuir
,
27
(
6
), pp.
2250
2257
.
16.
Sanada
,
T.
,
Watanabe
,
M.
, and
Fukano
,
T.
,
2005
, “
Effects of Viscosity on Coalescence of a Bubble Upon Impact With a Free Surface
,”
Chem. Eng. Sci.
,
60
(
19
), pp.
5372
5384
.
17.
Traykov
,
T. T.
, and
Ivanov
,
I. B.
,
1977
, “
Hydrodynamics of Thin Liquid Films. Effect of Surfactants on the Velocity of Thinning of Emulsion Films
,”
Int. J. Multiphase Flow
,
3
(
5
), pp.
471
483
.
18.
Langevin
,
D.
,
2015
, “
Bubble Coalescence in Pure Liquids and in Surfactant Solutions
,”
Curr. Opin. Colloid Interface Sci.
,
20
(
2
), pp.
92
97
.
19.
Giribabu
,
K.
,
Reddy
,
M. L. N.
, and
Ghosh
,
P.
,
2007
, “
Coalescence of Air Bubbles in Surfactant Solutions: Role of Salts Containing Mono-, Di-, and Trivalent Ions
,”
Chem. Eng. Commun.
,
195
(
3
), pp.
336
351
.
20.
Manev
,
E.
,
Tsekov
,
R.
, and
Radoev
,
B.
,
1997
, “
Effect of Thickness Non-Homogeneity on the Kinetic Behaviour of Microscopic Foam Film
,”
J. Dispers. Sci. Technol.
,
18
(
6–7
), pp.
769
788
.
21.
Tsekov
,
R.
,
1998
, “
The R4/5-Problem in the Drainage of Dimpled Thin Liquid Films
,”
Colloids Surf. Physicochem. Eng. Asp.
,
141
(
2
), pp.
161
164
.
22.
Karakashev
,
S. I.
, and
Manev
,
E. D.
,
2015
, “
Hydrodynamics of Thin Liquid Films: Retrospective and Perspectives
,”
Adv. Colloid Interface Sci.
,
222
, pp.
398
412
.
23.
Zawala
,
J.
,
Krasowska
,
M.
,
Dabros
,
T.
, and
Malysa
,
K.
,
2007
, “
Influence of Bubble Kinetic Energy on Its Bouncing During Collisions With Various Interfaces
,”
Can. J. Chem. Eng.
,
85
(
5
), pp.
669
678
.
24.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Proc. R. Soc. London
,
40
(
242–245
), pp.
191
203
.
25.
Zawala
,
J.
,
Kosior
,
D.
, and
Malysa
,
K.
,
2015
, “
Formation and Influence of the Dynamic Adsorption Layer on Kinetics of the Rising Bubble Collisions With Solution/Gas and Solution/Solid Interfaces
,”
Adv. Colloid Interface Sci.
,
222
, pp.
765
778
.
26.
Kosior
,
D.
,
Zawala
,
J.
, and
Malysa
,
K.
,
2011
, “
When and How α-Terpineol and n-Octanol Can Inhibit Bubble Attachment to Hydrophobic Surfaces
,”
Physicochem. Probl. Miner. Process.
,
47
(
1
), pp.
169
182
.http://www.journalssystem.com/ppmp/When-and-how-terpineol-and-n-octanol-can-inhibit-bubble-attachment-to-hydrophobic,79121,0,2.html
27.
Kosior
,
D.
,
Zawala
,
J.
,
Krasowska
,
M.
, and
Malysa
,
K.
,
2013
, “
Influence of N-Octanol and α-Terpineol on Thin Film Stability and Bubble Attachment to Hydrophobic Surface
,”
Phys. Chem. Chem. Phys.
,
15
(
7
), pp.
2586
2595
.
28.
Sadhal
,
S. S.
, and
Johnson
,
R. E.
,
1983
, “
Stokes Flow past Bubbles and Drops Partially Coated With Thin Films—Part 1: Stagnant Cap of Surfactant Film—Exact Solution
,”
J. Fluid Mech.
,
126
(
1
), pp.
237
250
.
29.
Manica
,
R.
,
Klaseboer
,
E.
, and
Chan
,
D. Y. C.
,
2015
, “
Force Balance Model for Bubble Rise, Impact, and Bounce From Solid Surfaces
,”
Langmuir
,
31
(
24
), pp.
6763
6772
.
30.
Manica
,
R.
,
Hendrix
,
M. H. W.
,
Gupta
,
R.
,
Klaseboer
,
E.
,
Ohl
,
C.-D.
, and
Chan
,
D. Y. C.
,
2013
, “
Effects of Hydrodynamic Film Boundary Conditions on Bubble–Wall Impact
,”
Soft Matter
,
9
(
41
), pp.
9755
9758
.
31.
Manica
,
R.
,
Hendrix
,
M. H. W.
,
Gupta
,
R.
,
Klaseboer
,
E.
,
Ohl
,
C.-D.
, and
Chan
,
D. Y. C.
,
2014
, “
Modelling Bubble Rise and Interaction With a Glass Surface
,”
Appl. Math. Model.
,
38
(
17–18
), pp.
4249
4261
.
32.
Klaseboer
,
E.
,
Manica
,
R.
,
Hendrix
,
M. H. W.
,
Ohl
,
C.-D.
, and
Chan
,
D. Y. C.
,
2014
, “
A Force Balance Model for the Motion, Impact, and Bounce of Bubbles
,”
Phys. Fluids
,
26
(
9
), p.
092101
.
33.
Mougin
,
G.
, and
Magnaudet
,
J.
,
2002
, “
Path Instability of a Rising Bubble
,”
Phys. Rev. Lett.
,
88
(
1
), p.
014502
.
34.
Zawala
,
J.
, and
Niecikowska
,
A.
,
2017
, “
Bubble-on-Demand' Generator With Precise Adsorption Time Control
,”
Rev. Sci. Instrum.
,
88
(
9
), p.
095106
.
35.
Loth
,
E.
,
2008
, “
Quasi-Steady Shape and Drag of Deformable Bubbles and Drops
,”
Int. J. Multiphase Flow
,
34
(
6
), pp.
523
546
.
36.
Derjaguin
,
B.
, and
Kussakov
,
M.
,
1992
, “
An Experimental Investigation of Polymolecular Solvate (Adsorbed) Films as Applied to the Development of a Mathematical Theory of the Stability of Colloids
,”
Prog. Surf. Sci.
,
40
(
1–4
), pp.
26
45
.
37.
Buckingham
,
E.
,
1914
, “
On Physically Similar Systems; Illustrations of the Use of Dimensional Equations
,”
Phys. Rev.
,
4
(
4
), pp.
345
376
.
38.
Moore
,
D. W.
,
1965
, “
The Velocity of Rise of Distorted Gas Bubbles in a Liquid of Small Viscosity
,”
J. Fluid Mech.
,
23
(
4
), pp.
749
766
.
39.
Ivanov
,
I. B.
,
Dimitrov
,
D. S.
,
Somasundaran
,
P.
, and
Jain
,
R. K.
,
1985
, “
Thinning of Films With Deformable Surfaces: Diffusion-Controlled Surfactant Transfer
,”
Chem. Eng. Sci.
,
40
(
1
), pp.
137
150
.
40.
Princen
,
H. M.
,
1963
, “
Shape of a Fluid Drop at a Liquid-Liquid Interface
,”
J. Colloid Sci.
,
18
(
2
), pp.
178
195
.
41.
Kosior
,
D.
,
Zawala
,
J.
,
Todorov
,
R.
,
Exerowa
,
D.
, and
Malysa
,
K.
,
2014
, “
Bubble Bouncing and Stability of Liquid Films Formed Under Dynamic and Static Conditions From N-Octanol Solutions
,”
Colloids Surf. Physicochem. Eng. Asp.
,
460
, pp.
391
400
.
You do not currently have access to this content.