A numerical model of a rectangular tank containing a layered liquid is modeled for studying layered sloshing wave. The Arbitrary Lagrangian Eulerian method is used to track the development for both the interfacial and free surface of the fluid domain. A series of cases are simulated for baffled and unbaffled sloshing with various excitation frequencies and various baffle configurations. A case containing a submerged block is also simulated to observe the interfacial wave interaction with the block structure and to observe how the position and size of the block affect the interfacial wave in a fluid. Velocity screenshots are analyzed for observing the velocity distribution in the layers and to observe the behavior of the interfacial layer for baffled and unbaffled tank cases. A fast Fourier transform spectral analysis of the layered liquid sloshing time series for both the interfacial layer and free surface layer is presented to observe the energy in the fluid layers as well as to observe the dominant peak frequency for both the layers.

References

References
1.
Veldman
,
A. E. P.
,
Gerrits
,
J.
,
Luppes
,
R.
,
Helder
,
J. A.
, and
Vreeburg
,
J. P. B.
,
2007
, “
The Numerical Simulation of Liquid Sloshing on Board Spacecraft
,”
J. Comput. Phys.
,
224
(
1
), pp.
82
99
.
2.
Rumyantsev
,
N. N.
, and
Moiseev
,
V. V.
,
1968
,
Dynamic Stability of Bodies Containing Fluid
,
Springer-Verlag
,
New York
, Chap. 3.
3.
Akyildiz
,
H.
, and
Erdem
,
Ü.
,
2005
, “
Experimental Investigation of Pressure Distribution on a Rectangular Tank Due to the Liquid Sloshing
,”
Ocean Eng.
,
32
(
11–12
), pp.
1503
1516
.
4.
Mateusz
,
G. K.
,
Moan
,
T.
, and
Rognebakke
,
O.
,
2006
, “
Probabilistic Analysis of Characteristic Pressure for LNG Tanks
,”
ASME J. Offshore Mech. Arct. Eng.
,
128
(2), pp.
133
144
.
5.
Lee
,
S. J.
,
Kim
,
M. H.
,
Lee
,
D. H.
,
Kim
,
J. W.
, and
Kim
,
Y. H.
,
2007
, “
The Effects of LNG-Tank Sloshing on the Global Motions of LNG Carriers
,”
Ocean Eng.
,
34
(
1
), pp.
10
20
.
6.
Kimura
,
K.
,
Ogura
,
K.
,
Mieda
,
T.
,
Yamamoto
,
K.
,
Eguchi
,
Y.
,
Moriya
,
S.
,
Hagiwara
,
Y.
,
Takakuwa
,
M.
,
Kodama
,
T.
, and
Koike
,
K.
,
1995
, “
Experimental and Analytical Studies on the Multi-Surface Sloshing Characteristics of a Top Entry Loop Type FBR
,”
Nucl. Eng. Des.
,
157
(
1–2
), pp.
49
63
.
7.
Der Wiesche, S. A.
, 2005, “
Noise Due to Sloshing Within Automotive Fuel Tanks
,”
Forsch. Ing.
,
70
, pp. 13–24.
8.
Xue
,
M. A.
,
Zheng
,
J. H.
,
Lin
,
P.
, and
Yuan
,
X.
,
2017
, “
Experimental Study on Vertical Baffles of Different Configurations in Suppressing Sloshing Pressure
,”
Ocean Eng.
,
136
, pp.
178
189
.
9.
Seibi
,
A. C.
, and
Pervez
,
T.
,
2007
, “
Strain Measurements in Baffles of High‐Density Polyethylene Mobile Water Tanks
,”
Exp. Tech.
,
31
(
5
), pp.
37
41
.
10.
Ibrahim
,
R. A.
,
Pilipchuk
,
V. N.
, and
Ikeda
,
T.
,
2001
, “
Recent Advances in Liquid Sloshing Dynamics
,”
ASME Appl. Mech. Rev.
,
54
(
2
), pp.
133
199
.
11.
Veletsos
,
A. S.
, and
Shivakumar
,
P.
,
1993
, “
Sloshing Response of Layered Liquids in Rigid Tanks
,”
Earthquake Eng. Struct. Dyn.
,
22
(
9
), pp.
801
821
.
12.
Kyung
,
S. K.
,
Moo
,
H. K.
, and
Park
,
J.
,
2014
, “
Development of Moving Particle Simulation Method for Multiliquid-Layer Sloshing
,”
Math. Probl. Eng.
,
2014
, p. 350165.
13.
Sciortino
,
G.
,
Adduce
,
C.
, and
La Rocca
,
M.
,
2009
, “
Sloshing of a Layered Fluid With a Free Surface as a Hamiltonian System
,”
Phys. Fluids
,
21
(5), p.
052102
.
14.
Ishiyama
,
T.
,
Kaneko
,
S.
,
Takemoto
,
S.
, and
Sawada
,
T.
,
2013
, “
Dynamic Pressure Change of Two-Layer Sloshing Using a Magnetic Fluid
,”
ASME
Paper No. FEDSM2013-16021.
15.
Rocca
,
M.
,
Sciortino
,
G.
, and
Boniforti
,
M. A.
,
2002
, “
Interfacial Gravity Waves in a Two-Fluid System
,”
Fluid Dyn. Res.
,
30
, pp.
31
63
.
16.
Gradinscak
,
M.
,
Semercigil
,
S. E.
, and
Turan
,
Ö. F.
,
2006
, “
Liquid Sloshing in Flexible Containers—Part 2: Using a Sloshing Absorber With a Flexible Container for Structural Control
,”
Fifth International Conference on CFD in the Process Industries CSIRO
, Melbourne, Australia, Dec. 13–15, pp.
1
6
.http://www.cfd.com.au/cfd_conf06/PDFs/158Tur.pdf
17.
Rognebakke
,
O. F.
, and
Faltinsen
,
O. M.
,
2003
, “
Coupling of Sloshing and Ship Motions
,”
J. Ship Res.
,
47
(
3
), pp.
208
221
.https://www.tib.eu/en/search/id/BLSE%3ARN137002277/Coupling-of-Sloshing-and-Ship-Motions/
18.
Xue
,
M. A.
, and
Lin
,
P.
,
2011
, “
Numerical Study of Ring Baffle Effects on Reducing Violent Liquid Sloshing
,”
Comput. Fluids
,
52
, pp.
116
129
.
19.
Xue
,
M. A.
,
Zheng
,
J.
, and
Lin
,
P.
,
2012
, “
Numerical Simulation of Sloshing Phenomena in Cubic Tank With Multiple Baffles
,”
J. Appl. Math.
,
2012
, p.
245702
.
20.
Ibrahim
,
R. A.
,
2015
, “
Recent Advances in Physics of Fluid Parametric Sloshing and Related Problems
,”
ASME J. Fluids Eng.
,
137
(
9
), p. 090801.
21.
Faltinsen
,
M. O.
, and
Timokha
,
A. N.
,
2009
,
Sloshing
,
Cambridge University Press
, Cambridge, UK, p. 608.
22.
Jung
,
J. H.
,
Yoon
,
H. S.
,
Lee
,
C. Y.
, and
Shin
,
S. C.
,
2012
, “
Effect of the Vertical Baffle Height on the Liquid Sloshing in a Three-Dimensional Rectangular Tank
,”
Ocean Eng.
,
44
, pp.
79
89
.
23.
Xue
,
M. A.
,
Lin
,
P. Z.
,
Zheng
,
J. H.
,
Ma
,
Y. X.
,
Yuan
,
X. L.
, and
Nguyen
,
V. T.
,
2013
, “
Effects of Perforated Baffle on Reducing Sloshing in Rectangular Tank: Experimental and Numerical Study
,”
China Ocean Eng.
,
27
(
5
), pp.
615
628
.
24.
Koh
,
C. G.
,
Luo
,
M.
,
Gao
,
M.
, and
Bai
,
W.
,
2013
, “
Modelling of Liquid Sloshing With Constrained Floating Baffle
,”
Comput. Struct.
,
122
, pp.
270
279
.
25.
Xue
,
M. A.
,
Zheng
,
J. H.
,
Lin
,
P.
, and
Xiao
,
Z.
,
2017
, “
Violent Transient Sloshing-Wave Interaction With a Baffle in a Three-Dimensional Numerical Tank
,”
J. Ocean Univ. China
,
16
(
4
), pp.
661
673
.
26.
Zhang
,
C.
,
Zhang
,
Q.
,
Zheng
,
J.
, and
Demirbilek
,
Z.
,
2017
, “
Parameterization of Nearshore Wave Front Slope
,”
Coastal Eng.
,
127
, pp.
80
87
.
27.
Zhang
,
J.-S.
,
Zhang
,
Y.
,
Jeng
,
D.-S.
,
Liu
,
P. L.-F.
, and
Zhang
,
C.
,
2014
, “
Numerical Simulation of Wave–Current Interaction Using a RANS Solver
,”
Ocean Eng.
,
75
, pp.
157
164
.
28.
Zheng
,
J.
,
Zhang
,
C.
,
Demirbilek
,
Z.
,
ASCE
,
F.
,
Lin
,
L.
, and
ASCE
,
M.
,
2014
, “
Numerical Study of Sandbar Migration Under Wave-Undertow Interaction
,”
J. Waterw. Port, Coastal Ocean Eng.
,
140
(
2
), pp.
146
159
.
29.
Multiphysics, COMSOL,
1998
, “
Introduction to COMSOL Multiphysics®
,” accesed Nov. 27, 2018, https://cdn.comsol.com/documentation/5.3.1.229/ Introduction To COMSOL Multiphysics.pdf
30.
Belakroum
,
R.
,
Kadja
,
M.
,
Mai
,
T.
, and
Maalouf
,
C.
,
2010
, “
An Efficient Passive Technique for Reducing Sloshing in Rectangular Tanks Partially Filled With Liquid
,”
Mech. Res. Commun.
,
37
(
3
), pp.
341
346
.
31.
Xue
,
M.
, and
Zheng
,
J.
,
2013
, “
Experimental Investigation on the Layered Liquid Sloshing in a Rectangular Tank
,”
23rd International Offshore and Polar Engineering Conference
, Anchorage, AK, June 30–July 5, Paper No.
ISOPE-I-13-409
.https://www.onepetro.org/conference-paper/ISOPE-I-13-409
You do not currently have access to this content.