We study drag reduction of a uniform flow over a flat surface due to a series of rectangular microgrooves created on the surface. The results reveal that making grooves on the surface usually leads to the generation of secondary vortices inside the grooves that, in turn, decreases the friction drag force and increases the pressure drag force. By increasing the thickness of the grooves to the thickness of the obstacle, the pressure drag increases due to the enhancement of the generated vortices and the occurrence of separation phenomenon and the friction drag reduces due to a decrease of the velocity gradient on the surface. In addition, by increasing the grooves depth ratio, the pressure drag coefficient decreases and the friction drag coefficient increases. However, the impact of the pressure drag coefficient is higher than that of the friction drag coefficient. From a specific point, increasing the groove depth ratio does not effect on decreasing the total pressure drag of the plate. Therefore, creating the grooves in flat surfaces would reduce the total drag coefficient of the plate if the thickness of the grooves does not exceed a specific size and the depth of the grooves is chosen to be sufficiently large. The lattice-Boltzmann method (LBM) is used and the optimal reduction of the drag coefficient is calculated. It is found that for the width ratio equal to 0.19 and the groove depth ratio equal to 0.2548, about 7% decrease is achieved for the average total drag.

References

References
1.
Floryan
,
J. M.
,
1997
, “
Stability of Wall-Bounded Shear Layers in the Presence of Simulated Distributed Surface Roughness
,”
Fluid Mech.
,
335
(
1
), pp.
29
55
.
2.
Degroot
,
C. T.
,
Wang
,
C.
, and
Floryan
,
J. M.
,
2016
, “
Drag Reduction Due to Streamwise Grooves in Turbulent Channel Flow
,”
ASME J. Fluids Eng.
,
138
(
12
), p. 121201.
3.
White
,
F.
,
2003
,
Fluid Mechanics
,
5th ed.
,
McGraw-Hill
,
Boston, MA
.
4.
Bechert
,
D. W.
,
Bruse
,
M.
,
Hage
,
W.
,
van der Hoeven
,
J. G. T.
, and
Hoppe
,
G.
,
1997
, “
Experiments on Drag-Reducing Surfaces and Their Optimization With an Adjustable Geometry
,”
J. Fluid Mech.
,
338
(
5
), pp.
59
87
.
5.
Bechert
,
D. W.
,
Hoppe
,
G.
,
Van der Hoeven
,
J. G. T.
, and
Makris
,
R.
,
1992
, “
The Berlin Oil Channel for Drag Reduction Research
,”
Exp. Fluids
,
12
(
4–5
), pp.
251
60
.
6.
Saravi
,
S. S.
, and
Cheng
,
K. A.
,
2013
, “
Review of Drag Reduction by Riblets and Micro-Textures in the Turbulent Boundary Layers
,”
Eur. Sci. J.
,
9
(
33
), pp.
62
81
.https://eujournal.org/index.php/esj/article/view/2104
7.
Bechert
,
D. W.
,
Bruse
,
M.
, and
Hage
,
W.
,
2000
, “
Experiments With Three-Dimensional Riblets as an Idealized Model of Shark Skin
,”
Exp. Fluids
,
28
(
5
), pp.
403
412
.
8.
Fink
,
V.
,
Guttler
,
A.
, and
Frohnapfel
,
B.
,
2015
, “
Experimental and Numerical Investigation of Riblets in a Fully Developed Turbulent Channel Flow
,”
European Drag Reduction and Flow Control Meeting
, Cambridge, UK, Mar. 23–26.
9.
Friedmann
,
E.
,
2005
, “
Optimal Shape Design and Its Application to Microstructures
,” Sixth World Congress on Structural and Multidisciplinary Optimization
, Rio de Janeiro, Brazil, May 30–June 3.
10.
Oefner
,
J.
, and
Lauder
,
G. V.
,
2012
, “
The Hydrodynamic Function of Shark Skin and Two Biomimetic Applications
,”
J. Exp. Biol.
,
21
(
5
), pp.
785
795
.
11.
Zhang
,
D.
,
Luo
,
Y.
,
Li
,
X.
, and
Chen
,
H.
,
2011
, “
Numerical Simulation and Experimental Study of Drag-Reducing Surface of a Real Shark Skin
,”
J. Hydrodyn
,
23
(
2
), pp.
204
211
.
12.
Chen
,
H.
,
Rao
,
F.
,
Shang
,
X.
,
Zhang
,
D.
, and
Hagiwara
,
I.
,
2013
, “
Biomimetic Drag Reduction Study on Herringbone Riblets of Bird Feather
,”
J. Bionic Eng.
,
10
(
3
), pp.
341
349
.
13.
Cui
,
J.
, and
Fu
,
Y.
,
2012
, “
A Numerical Study on Pressure Drop in Microchannel Flow With Different Bionic Micro-Grooved Surfaces
,”
J. Bionic Eng.
,
9
(
1
), pp.
99
109
.
14.
Zhao
,
D. Y.
,
Huang
,
Z. P.
,
Wang
,
M. J.
,
Wang
,
T.
, and
Jin
,
Y.
, “
Vacuum Casting Replication of Micro-Riblets on Shark Skin for Drag-Reducing Applications
,”
J. Mater. Process. Technol.
,
212
(
1
), pp.
198
202
.
15.
Stenzel
,
V.
,
Wilke
,
Y.
, and
Hage
,
W.
,
2011
, “
Drag-Reducing Paints for the Reduction of Fuel Consumption in Aviation and Shipping
,”
Prog. Org. Coat.
,
70
(
4
), pp.
224
229
.
16.
Lang
,
A. W.
, and
Johnson
,
T. J.
,
2010
, “
Drag Reduction Over 2D Square Embedded Cavities in Couette Flow
,”
Mech. Res. Comm.
,
37
(
4
), pp.
432
435
.
17.
Choi
,
K. S.
,
1998
, “
Near-Wall Structure of a Turbulent Boundary Layer With Riblets
,”
J. Fluid Mech
,
208
(
1
), pp.
417
458
.
18.
Tian
,
L. M.
,
Ren
,
L. Q.
,
Liu
,
Q. P.
,
Han Zhi
,
W.
, and
Jiang
,
X.
,
2007
, “
The Mechanism of Drag Reduction Around Bodies of Revolution Using Bionic Non-Smooth Surfaces
,”
Bionic Eng.
,
4
(
2
), pp.
109
116
.
19.
Viswanath
,
P. R.
,
2002
, “
Aircraft Viscous Drag Reduction Using Riblets
,”
Prog. Aerosp. Sci.
,
38
(
6–7
), pp.
571
600
.
20.
Suzuki
,
Y.
, and
Kasagi
,
N.
,
1994
, “
Turbulent Drag Reduction Mechanism Above a Rib Let Surface
,”
AIAA J.
,
32
(
9
), pp.
1781
1790
.
21.
Daschiel
,
G.
,
Peric
,
M.
,
Jovanovic
,
J.
, and
Delgado
,
A.
,
2013
, “
The Holy Grail of Microfluidics: Sub-Laminar Drag by Layout of Periodically Embedded Microgrooves
,”
Microfluid. Nanofluid.
,
15
(
5
), pp.
675
687
.
22.
Mohammadi
,
A.
, and
Floryan
,
J. M.
, “
Groove Optimization for Drag Reduction
,”
Phys. Fluids
,
25
(
11
), pp.
113
601
.
23.
Moussaoui
,
M.
,
Jami
,
M.
,
Mezrhab
,
A.
, and
Naji
,
H. J.
,
2009
, “
Lattice Boltzmann Simulation of Convective Heat Transfer From Heated Blocks in a Horizontal Channel
,”
Int. J. Comput. Methods
,
56
(
5
), pp.
422
443
.
24.
Mazloomi
,
A.
, and
Moosavi
,
A.
,
2013
, “
Thin Liquid Film Flow Over Substrates With Two Topographical Features
,”
Phys. Rev. E
,
87
(
2
), pp.
022
409
.
25.
Mazloomi
,
A.
,
Moosavi
,
A.
, and
Esmaili
,
E.
,
2013
, “
Gravity-Driven Thin Liquid Films Over Topographical Substrates
,”
Eur. Phys. J. E
,
36
(
6
), pp.
1292
8941
.
26.
Murdock
,
J.
,
Ibrahim
,
A.
, and
Yang
,
S.
,
2017
, “
An Efficient Method of Generating and Characterizing Filter Substrates for Lattice Boltzmann Analysis
,”
ASME J. Fluids Eng.
,
140
(
4
), p. 041203.
27.
Merdasi
,
A.
,
Ebrahimi
,
S.
,
Moosavi
,
A.
,
Shafii
,
M. B.
, and
Kowsary
,
F.
,
2018
, “
Numerical Simulation of Collision Between Two Droplets in the T-Shaped Microchannel With Lattice Boltzmann Method
,”
AIP Adv.
,
6
(
11
), pp.
115
307
.
28.
Merdasi
,
A.
,
Ebrahimi
,
S.
,
Moosavi
,
A.
,
Shafii
,
M. B.
, and
Kowsary
,
F.
,
2018
, “
Simulation of a Falling Droplet in a Vertical Channel With Rectangular Obstacles
,”
Eur. J. Fluid Mech. B/Fluids
,
118
(
2
), pp.
108
117
.
29.
Bhatnagar
,
P. L.
,
Cross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Process in Gases
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.
30.
Sukop
,
M. C.
, and
Throne
,
D.
,
2006
,
Lattice Boltzmann Modeling-An Introduction for Geoscientists and Engineers
,
Springer
,
Berlin
.
31.
Chapman
,
S.
, and
Cowling
,
T. G.
,
1970
,
The Mathematical Theory of Non-Uniform Gases
,
Cambridge University Press
,
Cambridge, UK
.
32.
Wolf-Gladrow
,
D.
,
2000
,
Lattice-Gas Cellular Automata and Lattice Boltzmann Models-An Introduction
,
Springer
,
Berlin
.
33.
He
,
X.
, and
Luo
,
L. S.
,
1997
, “
A Priori Derivation of the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
55
(
6
), pp. R6333–R6336.https://journals.aps.org/pre/abstract/10.1103/PhysRevE.55.R6333
34.
Lallemand
,
P.
, and
Luo
,
L. S.
,
1996
, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,”
Phys. Rev. E
,
61
(
6
), pp.
6546
6562
.
35.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation for Fluid Mechanics and Beyond Oxford
,
Clarendon
,
UK
.
36.
Zou
,
Q.
, and
He
,
X.
,
1997
, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model
,”
Phys. Fluids
,
9
(
6
), pp.
1591
1598
.
37.
Mohamad
,
A. A.
,
2011
, “
Lattice Boltzmann Method, Fundamentals and Engineering
,”
Applications With Computer Codes
,
Springer
,
Berlin
.
38.
He
,
X.
, and
Luo
,
L. S.
,
1997
, “
Theory of the Lattice Boltzmann Method: From the Boltzmann Equation to the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
56
(
6
), pp.
6811
6817
.
39.
Varnik
,
F.
,
Dorner
,
D.
, and
Raabe
,
D.
,
2007
, “
Roughness-Induced Flow Instability: A Lattice Boltzmann Study
,”
J. Fluid Mech.
,
573
(
4
), pp.
191
210
.
40.
Zhu
,
L.
,
Tretheway
,
D.
,
Petzold
,
L.
, and
Meinhart
,
C.
,
2005
, “
Simulation of Fluid Slip At3d Hydrophobic Microchannel Walls by the Lattice Boltzmann Method
,”
J. Comput. Phys.
,
202
(
1
), pp.
181
195
.
41.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
,
1982
, “
High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
.
42.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.
You do not currently have access to this content.