Modern high performance turbomachines frequently operate in supercritical condition above their first critical speed, rendering these machines prone to rotordynamic instability. The American Petroleum Institute (API) standards require advanced simulation models for level II stability analysis of impellers. Such data are then incorporated into rotor-bearing vibration response models. Despite recent advancements in high fidelity, general modeling (i.e., three-dimensional viscous transient nonaxisymmetric model) of closed impeller rotordynamic forces, no such general model is available for open impellers, especially the centrifugal type. This paper extends the transient computational fluid dynamics (CFD) model previously used for closed impellers to open impellers. The recent model uses a phase modulated, multifrequency approach for enhanced computational efficiency and robustness. Results are validated against literature experiments at design and off-flow condition. The model is further applied to a spectrum of specific speeds to extract the dimensionless rotordynamic forces for each class of impellers at design and off-flow conditions. Such dimensionless force data can be used to estimate the rotordynamic forces of impellers with similar specific speed. Depending on specific speed and the relative flow coefficient, many of these impellers are found to be excited by forward or backward whirl. Strong interaction with rotating stall typically appears in the force data at off-flow condition. Simulations of the isolated leakage path model (ILPM) for equivalent closed impellers reveal similar bumps and dips associated with highly swirling inflow which naturally occurs at part flow condition.

References

References
1.
Ehrich
,
F.
, and
Childs
,
D.
,
1984
, “
Self-Excited Vibration in High-Performance Turbomachinery
,”
Mech. Eng.
,
106
(
5
), pp.
66
79
.https://www.researchgate.net/publication/260750943_Self-Excited_Vibrations_in_High_Performance_Turbomachinery
2.
API
,
2002
, “Axial and Centrifugal Compressors and Expander-Compressors for Petroleum, Chemical and Gas Industry Services,”
American Petroleum Institute
,
Washington, DC
, Standard No.
API 617
.https://global.ihs.com/doc_detail.cfm?&item_s_key=00010658&item_key_date=830431
3.
Droege
,
A. R.
,
Williams
,
R. W.
, and
Garcia
,
R.
,
2000
, “
Unshrouded Impeller Technology Development Status
,”
12th PERC Prolusion Symposium
, Cleveland, OH, Oct. 26–27, Paper No. 20010020158.https://ntrs.nasa.gov/search.jsp?R=20010020158
4.
Gülich
,
J. F.
,
2008
,
Centrifugal Pumps
,
2nd ed.
,
Springer
,
Berlin
.
5.
Kim
,
E.
, and
Palazzolo
,
A.
,
2016
, “
Rotordynamic Force Prediction of a Shrouded Centrifugal Pump Impeller—Part I: Numerical Analysis
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031014
.
6.
Kim
,
E.
, and
Palazzolo
,
A.
,
2017
, “
Rotordynamic Stability Effects of Shrouded Centrifugal Impellers With Combined Whirl and Precession
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021007
.
7.
Moore
,
J. J.
,
Ransom
,
D. L.
, and
Viana
,
F.
,
2011
, “
Rotordynamic Force Prediction of Centrifugal Compressor Impellers Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
042504
.
8.
Moore
,
J. J.
, and
Palazzolo
,
A. B.
,
2001
, “
Rotordynamic Force Prediction of Whirling Centrifugal Impeller Shroud Passages Using Computational Fluid Dynamic Techniques
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
910
918
.
9.
Childs
,
D. W.
,
1989
, “
Fluid-Structure Interaction Forces at Pump-Impeller-Shroud Surfaces for Rotordynamic Calculations
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
111
(
3
), pp.
216
225
.
10.
Colding-Jorgensen
,
J.
,
1992
, “
Prediction of Rotor Dynamic Destabilizing Forces in Axial Flow Compressors
,”
ASME J. Fluids Eng.
,
114
(
4
), pp.
621
625
.
11.
Spakovszky
,
Z. S.
,
2000
, “
Analysis of Aerodynamically Induced Whirling Forces in Axial Flow Compressors
,”
ASME J. Turbomach.
,
122
(
4
), pp.
761
768
.
12.
Hiwata
,
A.
, and
Tsujimoto
,
Y.
,
2002
, “
Theoretical Analysis of Fluid Forces on an Open-Type Centrifugal Impeller in Whirling Motion
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
342
347
.
13.
Tsujimoto
,
Y.
,
Acosta
,
A. J.
, and
Brennen
,
C. E.
,
1988
, “
Theoretical Study of Fluid Forces on a Centrifugal Impeller Rotating and Whirling in a Volute
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
110
(
3
), pp.
263
269
.
14.
Yoshida
,
Y.
,
Tsujimoto
,
Y.
,
Ishii
,
N.
,
Ohashi
,
H.
, and
Kano
,
F.
,
1999
, “
Rotordynamic Forces on an Open-Type Centrifugal Compressor Impeller in Whirling Motion
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
259
265
.
15.
Jafari
,
M. M.
,
Atefi
,
G.
,
Khalesi
,
J.
, and
Soleymani
,
A.
,
2012
, “
A New Conjugate Heat Transfer Method to Analyze a 3D Steam Cooled Gas Turbine Blade With Temperature-Dependent Material Properties
,”
Proc. Inst. Mech. Eng., Part C
,
226
(
5
), pp.
1309
1320
.
16.
Schobeiri
,
M. T.
, and
Ghoreyshi
,
S. M.
,
2015
, “
The Ultrahigh Efficiency Gas Turbine Engine With Stator Internal Combustion
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021506
.
17.
Baskharone
,
E. A.
, and
Hensel
,
S. J.
,
1991
, “
A Finite-Element Perturbation Approach to Fluid/Rotor Interaction in Turbomachinery Elements—Part 2: Application
,”
ASME J. Fluids Eng.
,
113
(
3
), pp.
362
367
.
18.
Mortazavi
,
F.
, and
Palazzolo
,
A.
,
2018
, “
Rotordynamic Force Coefficients of Volutes and Diffusers for Prediction of Turbomachinery Vibration
,”
ASME J. Vib. Acoust.
,
140
(
5
), p.
051015
.
19.
Li
,
Z.
,
Li
,
J.
, and
Yan
,
X.
,
2013
, “
Multiple Frequencies Elliptical Whirling Orbit Model and Transient RANS Solution Approach to Rotordynamic Coefficients of Annual Gas Seals Prediction
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031005
.
20.
Schroeder
,
M.
,
1970
, “
Synthesis of Low-Peak-Factor Signals and Binary Sequences With Low Autocorrelation (Corresp.)
,”
IEEE Trans. Inf. Theory
,
16
(
1
), pp.
85
89
.
21.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
, and
Mori
,
Y.
,
1996
, “
Study of Vaneless Diffuser Rotating Stall Based on Two-Dimensional Inviscid Flow Analysis
,”
ASME J. Fluids Eng.
,
118
(
1
), pp.
123
127
.
22.
Childs
,
D. W.
,
1991
, “
Centrifugal-Acceleration Modes for Incompressible Fluid in the Leakage Annulus Between a Shrouded Pump Impeller and Its Housing
,”
ASME J. Vib. Acoust.
,
113
(
2
), pp.
209
218
.
23.
Kim
,
E.
, and
Palazzolo
,
A.
,
2016
, “
Rotordynamic Force Prediction of a Shrouded Centrifugal Pump Impeller—Part II: Stability Analysis
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031015
.
24.
CFTurbo
,
2017
, “CFTurbo User Manual,”
CFTurbo
,
Dresden, Germany
.
25.
Lakshminarayana
,
B.
,
1991
, “
An Assessment of Computational Fluid Dynamic Techniques in the Analysis and Design of Turbomachinery—The 1990 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
113
(
3
), pp.
315
352
.
26.
Mortazavi
,
F.
, and
Palazzolo
,
A.
,
2017
, “
Prediction of Rotordynamic Performance of Smooth Stator-Grooved Rotor Liquid Annular Seals Utilizing Computational Fluid Dynamics
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031002
.
27.
Khalesi
,
J.
,
Modaresahmadi
,
S.
, and
Atefi
,
G.
,
2018
, “
SEM Gamma Prime Observation in a Thermal and Stress Analysis of a First-Stage Rene'80H Gas Turbine Blade: Numerical and Experimental Investigation
,”
Iranian J. Sci. Technol., Trans. Mech. Eng.
(epub).
28.
Smirnov
,
P. E.
, and
Menter
,
F. R.
,
2009
, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term
,”
ASME J. Turbomach.
,
131
(
4
), p.
041010
.
29.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
(
1
), pp.
625
632
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.2814&rep=rep1&type=pdf
30.
Jafari
,
M.
,
Afshin
,
H.
,
Farhanieh
,
B.
, and
Bozorgasareh
,
H.
,
2015
, “
Numerical Aerodynamic Evaluation and Noise Investigation of a Bladeless Fan
,”
J. Appl. Fluid Mech.
,
8
(
1
), pp.
133
142
.http://jafmonline.net/web/guest/home?p_p_id=JournalArchive_WAR_JournalArchive_INSTANCE_nvhn&p_p_action=0&p_p_state=maximized&p_p_mode=view&_JournalArchive_WAR_JournalArchive_INSTANCE_nvhn_form_page=main_form&selectedVolumeId=67&selectedIssueId=220
31.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
32.
ANSYS
,
2018
, “ANSYS CFX-Solver Theory Guide,”
ANSYS
,
Canonsburg, PA
.
33.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Comparisons of Rotordynamic Characteristics Predictions for Annular Gas Seals Using the Transient Computational Fluid Dynamic Method Based on Different Single-Frequency and Multifrequency Rotor Whirling Models
,”
ASME J. Tribol.
,
138
(
1
), p.
011701
.
34.
Bolleter
,
U.
,
Wyss
,
A.
,
Welte
,
I.
, and
Stuerchler
,
R.
,
1987
, “
Measurement of Hydrodynamic Interaction Matrices of Boiler Feed Pump Impellers
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
109
(
2
), pp.
144
151
.
35.
Jery
,
B.
,
1987
, “
Experimental Study of Unsteady Hydrodynamic Force Matrices on Whirling Centrifugal Pump Impellers
,” Ph.D. dissertation, California Institute of Technology, Pasadena, CA.
36.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
, and
Coleman
,
H.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
37.
Pace
,
G.
,
Valentini
,
D.
,
Pasini
,
A.
,
Torre
,
L.
,
Hadavandi
,
R.
, and
d'Agostino
,
L.
,
2017
, “
Inducer and Centrifugal Pump Contributions to the Rotordynamic Fluid Forces Acting on a Space Turbopump
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021104
.
38.
Pasini
,
A.
,
Torre
,
L.
,
Cervone
,
A.
, and
d'Agostino
,
L.
,
2011
, “
Continuous Spectrum of the Rotordynamic Forces on a Four Bladed Inducer
,”
ASME J. Fluids Eng.
,
133
(
12
), p.
121101
.
39.
Yoshida
,
Y.
,
Tsujimoto
,
Y.
,
Morimoto
,
G.
,
Nishida
,
H.
, and
Morii
,
S.
,
2003
, “
Effects of Seal Geometry on Dynamic Impeller Fluid Forces and Moments
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
786
795
.
40.
Stepanoff
,
A. J.
,
1957
,
Centrifugal and Axial Flow Pumps Theory Design and Application
,
2nd ed.
,
Wiley
,
New York
.
41.
Martinez-Sanchez
,
M.
,
Jaroux
,
B.
,
Song
,
S. J.
, and
Yoo
,
S.
,
1995
, “
Measurement of Turbine Blade-Tip Rotordynamic Excitation Forces
,”
ASME J. Turbomach.
,
117
(
3
), pp.
384
392
.
42.
Ehrich
,
F.
,
1993
, “
Rotor Whirl Forces Induced by the Tip Clearance Effect in Axial Flow Compressors
,”
ASME J. Vib. Acoust.
,
115
(
4
), pp.
509
515
.
43.
Bhattacharyya
,
A.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
,
1997
, “
Rotordynamic Forces in Cavitating Inducers
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
768
774
.
This content is only available via PDF.
You do not currently have access to this content.