The clocking positions between the inducer and the impeller have a certain impact on the performance of the high-speed centrifugal pump, which however, is often ignored by designers. In the present study, three-dimensional numerical simulation based on detached eddy simulation method is adopted to evaluate the influence of this clocking effect on unsteady pressure pulsations in a full-scale liquid rocket engine oxygen turbopump. A new omega vortex identification method is introduced to clarify the internal correlation between unsteady flow structures and pressure pulsations and to shed comprehensive light on the formation mechanism of this clocking effect. Results show that the clocking effect has little influence on the unsteady pressure field in inducer passages while it significantly affects the rotor–stator interaction (RSI) effect leading to the alteration of the pressure spectra in RSI region, diffuser and volute diffuser pipe. The components at the inducer blade passing frequency in the pressure spectra are remarkably suppressed and the total pressure pulsation energy in these regions is decreased by an average of 13.94%, 12.94%, and 34.65%, respectively, when the inducer blade trailing edges are located in the middle of two adjacent impeller blades. The vortex analysis in the specific region reveals that the pressure pulsations in RSI region and the downstream regions are closely associated with the unsteady vortex shedding from the diffuser blades and the formation of the clocking effect is precisely due to different processes of the periodic vortex shedding from the diffuser blade pressure surfaces.

References

References
1.
Wang
,
W.
,
Chen
,
H.
,
Li
,
Y.
, and
Du
,
Y.
,
2015
, “
Matching Research of Inducer and Impeller of High-Speed Centrifugal Pump
,”
J. Drain. Irrig. Mach. Eng.
,
33
(
4
), pp.
301
305
(in Chinese).
2.
Gonzalez
,
J.
,
Fernandez
,
J.
,
Blanco
,
E.
, and
Santolaria
,
C.
,
2002
, “
Numerical Simulation of the Dynamic Effect Due to Impeller-Volute Interaction in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
348
355
.
3.
Gonzalez
,
J.
,
Parrondo
,
J.
,
Santolaria
,
C.
, and
Blanco
,
E.
,
2006
, “
Steady and Unsteady Radial Forces for a Centrifugal Pump With the Impeller to Tongue Gap Variation
,”
ASME J. Fluids Eng.
,
128
(
3
), pp.
454
462
.
4.
Barrio
,
R.
,
Blanco
,
E.
,
Parrondo
,
J.
,
Gonzalez
,
J.
, and
Fernandez
,
J.
,
2008
, “
The Effect of Impeller Cutback on the Fluid-Dynamic Pulsations and Load at the Blade-Passing Frequency in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111102
.
5.
Tsukamoto
,
H.
, and
Zhang
,
M.
,
2005
, “
Unsteady Hydrodynamic Forces Due to Rotor-Stator Interaction on a Diffuser Pump With Identical Number of Vanes on the Impeller and Diffuser
,”
ASME J. Fluids Eng.
,
127
(4), pp.
743
751
.
6.
Khalifa
,
A. E.
,
Al-Qutub
,
A. M.
, and
Ben-Mansour
,
R.
,
2011
, “
Study of Pressure Fluctuations and Induced Vibration at Blade-Passing Frequencies of a Double Volute Pump
,”
Arabian J. Sci. Eng.
,
36
(
7
), pp.
1333
1345
.
7.
Al-Qutub
,
A. M.
,
Khalifa
,
A. E.
, and
Al-Sulaiman
,
F. A.
,
2012
, “
Exploring the Effect of V-Shaped Cut at Blade Exit of a Double Volute Centrifugal Pump
,”
ASME J. Pressure Vessel Technol.
,
134
(
1
), p.
011301
.
8.
Zhang
,
N.
,
Yang
,
M.
,
Gao
,
B.
,
Li
,
Z.
, and
Ni
,
D.
,
2016
, “
Investigation of Rotor-Stator Interaction and Flow Unsteadiness in a Low Specific Speed Centrifugal Pump
,”
J. Mech. Eng.
,
62
(
1
), pp.
21
31
.
9.
Gao
,
B.
,
Zhang
,
N.
,
Li
,
Z.
,
Ni
,
D.
, and
Yang
,
M.
,
2016
, “
Influence of the Blade Trailing Edge Profile on the Performance and Unsteady Pressure Pulsations in a Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051106
.
10.
Gao
,
B.
,
Guo
,
P.
,
Zhang
,
N.
,
Li
,
Z.
, and
Yang
,
M.
,
2017
, “
Unsteady Pressure Pulsation Measurements and Analysis of a Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
139
(
7
), p.
071101
.
11.
Zhang
,
N.
,
Yang
,
M.
,
Gao
,
B.
,
Li
,
Z.
, and
Ni
,
D.
,
2014
, “
Unsteady Pressure Pulsation and Rotating Stall Characteristics in a Centrifugal Pump With Slope Volute
,”
Adv. Mech. Eng.
,
6
, p.
710719
.
12.
Zhang
,
N.
,
Yang
,
M.
,
Gao
,
B.
,
Li
,
Z.
, and
Ni
,
D.
,
2015
, “
Experimental and Numerical Analysis of Unsteady Pressure Pulsation in a Centrifugal Pump With Slope Volute
,”
J. Mech. Sci. Technol.
,
29
(
10
), pp.
4231
4238
.
13.
Ni
,
D.
,
Yang
,
M.
,
Zhang
,
N.
,
Gao
,
B.
, and
Li
,
Z.
,
2017
, “
Unsteady Flow Structures and Pressure Pulsations in a Nuclear Reactor Coolant Pump With Spherical Casing
,”
ASME J. Fluids Eng.
,
139
(
5
), p.
051103
.
14.
Long
,
Y.
,
Wang
,
D.
,
Yin
,
J.
,
Hu
,
Y.
, and
Ran
,
H.
,
2017
, “
Numerical Investigation on the Unsteady Characteristics of Reactor Coolant Pumps With Non-Uniform Inflow
,”
Nucl. Eng. Des.
,
320
, pp.
65
76
.
15.
Long
,
Y.
,
Wang
,
D.
,
Yin
,
J.
, and
Hu
,
Y.
,
2017
, “
Experimental Investigation on the Unsteady Pressure Pulsation of Reactor Coolant Pumps With Non-Uniform Inflow
,”
Ann. Nucl. Energy
,
110
, pp.
501
510
.
16.
Zhao
,
X.
,
Xiao
,
Y.
,
Wang
,
Z.
,
Luo
,
Y.
, and
Cao
,
L.
,
2018
, “
Unsteady Flow and Pressure Pulsation Characteristics Analysis of Rotating Stall in Centrifugal Pumps Under Off-Design Conditions
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021105
.
17.
Konig
,
S.
,
Stoffel
,
B.
, and
Schobeiri
,
M. T.
,
2009
, “
Experimental Investigation of the Clocking Effect in a 1.5-Stage Axial Turbine—Part I: Time-Average Results
,”
ASME J. Turbomach.
,
131
(
2
), p.
021003
.
18.
Key
,
N. L.
,
Lawless
,
P. B.
, and
Fleeter
,
S.
,
2010
, “
An Experimental Study of Vane Clocking Effect on Embedded Compressor Stage Performance
,”
ASME J. Turbomach.
,
132
(
1
), p.
011018
.
19.
Jiang
,
W.
,
Li
,
G.
,
Liu
,
P.
, and
Fu
,
L.
,
2016
, “
Numerical Investigation of Influence of the Clocking Effect on the Unsteady Pressure Fluctuations and Radial Forces in the Centrifugal Pump With Vaned Diffuser
,”
Int. Commun. Heat Mass
,
71
, pp.
164
171
.
20.
Wang
,
W.
,
Yuan
,
S.
,
Pei
,
J.
,
Zhang
,
J.
, and
Yuan
,
J.
,
2015
, “
Numerical Analysis of the Clocking Effect on the Pressure Fluctuation in the Centrifugal Pump With Vaned Diffuser
,”
J. Mech. Eng.
,
51
(
4
), pp.
185
192
.
21.
Wang
,
W.
,
Pei
,
J.
,
Yuan
,
S.
, and
Yin
,
T.
,
2018
, “
Experimental Investigation on Clocking Effect of Vaned Diffuser on Performance Characteristics and Pressure Pulsations in a Centrifugal Pump
,”
Exp. Ther. Sci.
,
90
, pp.
286
298
.
22.
Qu
,
W.
,
Tan
,
L.
,
Cao
,
S.
,
Wang
,
Y.
, and
Xu
,
Y.
,
2016
, “
Numerical Investigation of Clocking Effect on a Centrifugal Pump With Inlet Guide Vanes
,”
Eng. Comput.
,
30
(
2
), pp.
465
481
.
23.
Tan
,
M.
,
He
,
N.
,
Liu
,
H.
,
Wu
,
X.
, and
Ding
,
J.
,
2016
, “
Experimental Test on Impeller Clocking Effect in a Multistage Centrifugal Pump
,”
Adv. Mech. Eng.
,
8
(
4
), pp.
1
10
.
24.
ANSYS
,
2016
, “
ANSYS CFX User' Guide
,” Release 17.0, ANSYS, Canonsburg, PA.
25.
Pei
,
J.
,
Yuan
,
S.
Benra
,
F.-K.
, and
Dohmen
,
H. J.
,
2012
, “
Numerical Prediction of Unsteady Pressure Field Within the Whole Flow Passage of a Radial Single-Blade Pump
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101103
.
26.
Zuo
,
Z.
,
Liu
,
S.
,
Sun
,
Y.
, and
Wu
,
Y.
,
2015
, “
Pressure Fluctuations in the Vaneless Space of High-Head Pump-Turbines—A Review
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
965
974
.
27.
Li
,
J.
,
Zhang
,
Y.
,
Liu
,
K.
,
Xian
,
H.
, and
Yu
,
J.
,
2017
, “
Numerical Simulation of Hydraulic Force on the Impeller of Reversible Pump Turbines in Generating Mode
,”
J. Hydrodyn.
,
29
(
4
), pp.
603
609
.
28.
Liu
,
C.
,
Wang
,
Y.
,
Yang
,
Y.
, and
Duan
,
Z.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China Phys. Mech. Astron.
,
59
(
8
), p.
684711
.
29.
Zhang
,
Y.
,
Liu
,
K.
,
Xian
,
H.
, and
Du
,
X.
,
2018
, “
A Review of Methods for Vortex Identification in Hydroturbines
,”
Renewable Sustainable Energy Rev.
,
81
(Pt. 1), pp.
1
17
.
You do not currently have access to this content.