Lithium ion batteries have a well-documented tendency to fail energetically under various abuse conditions. These conditions frequently result in decomposition of the electrochemical components within the battery resulting in gas generation and increased internal pressure which can lead to an explosive case rupture. The 18650 format cell incorporates a vent mechanism located within a crimped cap to relieve pressure and mitigate the risk of case rupture. Cell venting, however, introduces additional safety concerns associated with the flow of flammable gases and liquid electrolyte into the environment. Experiments to quantify key parameters are performed to elucidate the external dynamics of battery venting. A first experiment measures the vent burst pressure. Burst vent caps are then tested with a second experimental fixture to measure vent opening area and discharge coefficient during choked-flow venting, which occurs during battery failure. Vent opening area and discharge coefficient are calculated from stagnation temperature, stagnation pressure, and static pressure measurements along with compressible-isentropic flow equations and conservation of mass. Commercially sourced vent caps are used with repeated tests run to quantify repeatability and variability. Validation experiments confirmed accuracy of opening area and discharge coefficient measurement. Further, trials conducted on vent caps from two sources demonstrate the potential for variation between manufacturers.

References

1.
Abada
,
S.
,
Marlair
,
G.
,
Lecocq
,
A.
,
Petit
,
M.
,
Sauvant-Moynot
,
M.
, and
Huet
,
F.
,
2016
, “
Safety Focused Modeling of Lithium-Ion Batteries: A Review
,”
J. Power Sources
,
306
, pp.
178
192
.
2.
Weicker
,
P.
,
2014
,
A Systems Approach to Lithium-Ion Battery Management
,
Artech House
, Boston, MA.
3.
Wang
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Chu
,
G.
,
Sun
,
J.
, and
Chen
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
.
4.
Roth
,
E. P.
,
Crafts
,
C. C.
,
Doughty
,
D. H.
, and
McBreen
,
J.
,
2004
, “
Advanced Technology Development Program for Lithium-Ion Batteries: Thermal Abuse Performance of 18650 Li-Ion Cells
,” Technical Report, Sandia National Laboratories, Albuquerque, NM, Report No. SAND2004-0584.
5.
Zhang
,
S. S.
,
2014
, “
Insight Into the Gassing Problem of li-Ion Battery
,”
Front. Energy Res.
,
2
, pp.
1
4
.
6.
Lamb
,
J.
,
Orendorff
,
C. J.
,
Roth
,
E. P.
, and
Langendorf
,
J.
,
2015
, “
Studies on the Thermal Breakdown of Common Li-Ion Battery Electrolyte Components
,”
J. Electrochem. Soc.
,
162
(
10
), pp.
A2131
A2135
.
7.
Chen
,
W. C.
,
Li
,
J. D.
,
Shu
,
C. M.
, and
Wang
,
Y. W.
,
2015
, “
Effects of Thermal Hazard on 18650 Lithium-Ion Battery Under Different States of Charge
,”
J. Therm. Anal. Calorim.
,
121
(
1
), pp.
525
531
.
8.
Lyon
,
R. E.
, and
Walters
,
R. N.
,
2016
, “
Energetics of Lithium Ion Battery Failure
,”
J. Hazard. Mater.
,
318
, pp.
164
172
.
9.
Fu
,
Y.
,
Lu
,
S.
,
Li
,
K.
,
Liu
,
C.
,
Cheng
,
X.
, and
Zhang
,
H.
,
2015
, “
An Experimental Study on Burning Behaviors of 18650 Lithium Ion Batteries Using a Cone Calorimeter
,”
J. Power Sources
,
273
, pp.
216
222
.
10.
Finegan
,
D. P.
,
Scheel
,
M.
,
Robinson
,
J. B.
,
Tjaden
,
B.
,
Hunt
,
I.
,
Mason
,
T. J.
,
Millichamp
,
J.
,
Di Michiel
,
M.
,
Offer
,
G. J.
,
Hinds
,
G.
,
Brett
,
D. J. L.
, and
Shearing
,
P. R.
,
2015
, “
In-Operando High-Speed Tomography of Lithium-Ion Batteries During Thermal Runaway
,”
Nat. Commun.
,
6
, p.
6924
.
11.
Spinner
,
N. S.
,
Field
,
C. R.
,
Hammond
,
M. H.
,
Williams
,
B. A.
,
Myers
,
K. M.
,
Lubrano
,
A. L.
,
Rose-Pehrsson
,
S. L.
, and
Tuttle
,
S. G.
,
2015
, “
Physical and Chemical Analysis of Lithium-Ion Battery Cell-to-Cell Failure Events Inside Custom Fire Chamber
,”
J. Power Sources
,
279
, pp.
713
721
.
12.
Mier
,
F. A.
,
Morales
,
R.
,
Coultas-McKenney
,
C. A.
,
Hargather
,
M. J.
, and
Ostanek
,
J.
,
2017
, “
Overcharge and Thermal Destructive Testing of Lithium Metal Oxide and Lithium Metal Phosphate Batteries Incorporating Optical Diagnostics
,”
J. Energy Storage
,
13
, pp.
378
386
.
13.
Jeevarajan
,
J.
, and
Manzo
,
M.
,
2009
, “
Engineering and Safety Center Technical Bulletin
,” National Aeronautics and Space Administration, Hampton, VA, Report No. 09-02.
14.
Mikolajczak
,
C.
,
Kahn
,
M.
,
White
,
K.
, and
Long
,
R. T.
,
2011
,
Lithium-Ion Batteries Hazard and Use Assessment
,
Springer
, New York.
15.
Balakrishnan
,
P. G.
,
Ramesh
,
R.
, and
Prem Kumar
,
T.
,
2006
, “
Safety Mechanisms in Lithium-Ion Batteries
,”
J. Power Sources
,
155
(
2
), pp.
401
414
.
16.
Buchmann
,
I.
,
2001
,
Batteries in a Portable World a Handbook on Rechargeable Batteries for Non-Engineers
,
Cadex Electronics
, Richmond, BC, Canada.
17.
Coman
,
P. T.
,
Rayman
,
S.
, and
White
,
R. E.
,
2016
, “
A Lumped Model of Venting During Thermal Runaway in a Cylindrical Lithium Cobalt Oxide Lithium-Ion Cell
,”
J. Power Sources
,
307
, pp.
56
62
.
18.
Mier
,
F. A.
,
2018
, “
Measurement of 18650 Format Lithium Richmond, BC V6W 1J6, Canada Ion Battery Vent Mechanism Flow Parameters
,” Master's thesis, New Mexico Institute of Mining and Technology, Socorro, NM.
19.
John
,
J. E.
, and
Keith
,
T. G.
,
2006
,
Gas Dynamics
, 3rd ed.,
Pearson Prentice Hall
, Upper Saddle River, NJ.
20.
Cengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2010
,
Fluid Mechanics Fundamentals and Applications
, 2nd ed.,
McGraw-Hill
, New York.
21.
Czetany
,
L.
, and
Lang
,
P.
,
2018
, “
Discharge Coefficients for Circular Side Outlets
,”
ASME J. Fluids Eng.
,
140
(
7
), p.
071205
.
22.
Kayser
,
J. C.
, and
Shambaugh
,
R. L.
,
1991
, “
Discharge Coefficients for Compressible Flow Through Small-Diameter Orifices and Convergent Nozzles
,”
Chem. Eng. Sci.
,
46
(
7
), pp.
1697
1711
.
23.
Taylor
,
J. R.
,
1997
,
An Introduction to Error Analysis
,
University Science Books
, New York.
24.
Omega
,
2018
, “
Wire Color Codes and Limits of Error
,” L78 Datasheet, accessed Mar. 6, 2019, www.omega.com/techref/colorcodes.html
25.
Golubkov
,
A. W.
,
Fuchs
,
D.
,
Wagner
,
J.
,
Wiltsche
,
H.
,
Stangl
,
C.
,
Fauler
,
G.
,
Voitic
,
G.
,
Thaler
,
A.
, and
Hacker
,
V.
,
2014
, “
Thermal-Runaway Experiments on Consumer Li-Ion Batteries With Metal-Oxide and Olivin-Type Cathodes
,”
RSC Adv.
,
4
(
7
), pp.
3633
3642
.
You do not currently have access to this content.