This paper describes a fluid-structure interaction (FSI) model for the study of flexible cloth-like structures or the so-called rags in flows through centrifugal pumps. The structural model and its coupling to the flow solver are based on a Lagrangian formulation combining structural deformation and motion modeling coupled to a sharp interface immersed boundary model (IBM). The solution has been implemented in the open-source library OpenFOAM relying in particular on its PIMPLE segregated Navier–Stokes pressure–velocity coupling and its detached eddy simulation (DES) turbulence model. The FSI solver is assessed in terms of its capability to generate consistent deformations and transport of the immersed flexible structures. Two benchmark cases are covered and both involve experimental validation with three-dimensional (3D) structural deformations of the rag captured using a digital image correlation (DIC) technique. Simulations of a rag transported in a centrifugal pump confirm the suitability of the model to inform on the dynamic behavior of immersed structures under practical engineering conditions.

References

1.
Gerlach
,
S.
, and
Thamsen
,
P. U.
,
2017
, “
Cleaning Sequence Counters Clogging: A Quantitative Assessment Under Real Operation Conditions of a Wastewater Pump
,”
ASME
Paper No. FEDSM2017-69020.
2.
Jensen
,
A. L.
,
Gerlach
,
S.
,
Lykholt-Ustrup
,
F.
,
Sørensen
,
H.
,
Rosendahl
,
L.
, and
Thamsen
,
P. U.
,
2017
, “
Investigation of the Influence of Operating Point on the Shape and Position of Textile Material in the Inlet Pipe to a Dry-Installed Wastewater Pump
,”
ASME
Paper No. FEDSM2017-69298.
3.
Pöhler
,
M.
,
Höchel
,
K.
, and
Gerlach
,
S.
,
2017
, “
Linking Efficiency to Functional Performance by a Pump Test Standard for Wastewater Pumps
,”
ASME
Paper No. AJKFluids2015-33763.
4.
Connolly
,
R.
,
2017
, “
An Experimental and Numerical Investigation Into Flow Phenomena Leading to Wastewater Centrifugal Pump Blockage
,”
ME thesis
, Dublin City University, Dublin, Ireland.http://doras.dcu.ie/21969/
5.
Jensen
,
A. L.
,
Sørensen
,
H.
,
Rosendahl
,
L.
, and
Thamsen
,
P. U.
,
2018
, “
Characterisation of Textile Shape and Position Upstream of a Wastewater Pump Under Different Part Load Conditions
,”
Urban Water J.
,
15
(
2
), pp.
132
137
.
6.
Jensen
,
A. L.
,
Sørensen
,
H.
, and
Rosendahl
,
L.
,
2016
, “
Towards Simulation of Clogging Effects in Wastewater Pumps: Modelling of Fluid Forces on a Fiber of Bonded Particles Using a Coupled CFD-DEM Approach
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
ISROMAC 2016
), Honolulu, HI, Apr. 10–15, pp.
1
6
.https://www.researchgate.net/publication/311615092_Towards_Simulation_of_Clogging_Effects_in_Wastewater_Pumps_Modelling_of_Fluid_Forces_on_a_Fiber_of_Bonded_Particles_using_a_Coupled_CFD-DEM_Approach
7.
Jensen
,
A. L.
,
Sørensen
,
H.
,
Rosendahl
,
L.
,
Adamsen
,
P.
, and
Lykholt-Ustrup
,
F.
,
2016
, “
Investigation of Drag Force on Fibres of Bonded Spherical Elements Using a Coupled CFD-DEM Approach
,”
Ninth International Conference on Multiphase Flow
(
ICMF
), Firenze, Italy, May 22–27, Paper No. 1922.https://www.researchgate.net/publication/311615006_Investigation_of_Drag_Force_on_Fibres_of_Bonded_Spherical_Elements_using_a_Coupled_CFD-DEM_Approach
8.
Yao
,
Z.-F.
,
Yang
,
Z.-J.
, and
Wang
,
F.-J.
,
2016
, “
Evaluation of Near-Wall Solution Approaches for Large-Eddy Simulations of Flow in a Centrifugal Pump Impeller
,”
Eng. Appl. Comput. Fluid Mech.
,
10
(
1
), pp.
454
467
.
9.
Posa
,
A.
,
Lippolis
,
A.
, and
Balaras
,
E.
,
2016
, “
Investigation of Separation Phenomena in a Radial Pump at Reduced Flow Rate by Large-Eddy Simulation
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121101
.
10.
Pei
,
J.
,
Yuan
,
S.
,
Benra
,
F.-K.
, and
Dohmen
,
H.
,
2012
, “
Numerical Prediction of Unsteady Pressure Field Within the Whole Flow Passage of a Radial Single-Blade Pump
,”
ASME J. Fluids Eng.
,
134
(
10
), p. 101103.
11.
Pei
,
J.
,
Dohmen
,
H.
,
Yuan
,
S.
, and
Benra
,
F.-K.
,
2012
, “
Investigation of Unsteady Flow-Induced Impeller Oscillations of a Single-Blade Pump Under Off-Design Conditions
,”
J. Fluids Struct.
,
35
, pp.
89
104
.
12.
Souza
,
B. D.
, and
Niven
,
A.
,
2008
, “
Single Blade Impeller Development Through the Use of the Design of Experiments Method in Combination With Numerical Simulation
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC 2008)
, Honolulu, HI, Feb. 17–22, pp.
1
8
.
13.
de Souza
,
B.
,
Niven
,
A.
, and
McEvoy
,
R.
,
2010
, “
A Numerical Investigation of the Constant-Velocity Volute Design Approach as Applied to the Single Blade Impeller Pump
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061103
.
14.
Stephen
,
C.
,
Yuan
,
S.
,
Pei
,
J.
, and
Cheng
,
G. X.
,
2017
, “
Numerical Flow Prediction in Inlet Pipe of Vertical Inline Pump
,”
ASME J. Fluids Eng.
,
140
(
5
), p. 051201.
15.
Specklin
,
M.
, and
Delauré
,
Y.
,
2018
, “
A Sharp Immersed Boundary Method Based on Penalisation and Its Application to Moving Boundaries and Turbulent Rotating Flows
,”
Eur. J. Mech./B Fluids
,
70
, pp.
130
147
.
16.
Huang
,
W.-X.
,
Shin
,
S. J.
, and
Sung
,
H. J.
,
2007
, “
Simulation of Flexible Filaments in a Uniform Flow by the Immersed Boundary Method
,”
J. Comput. Phys.
,
226
(
2
), pp.
2206
2228
.
17.
Huang
,
W.-X.
, and
Sung
,
H. J.
,
2010
, “
Three-Dimensional Simulation of a Flapping Flag in a Uniform Flow
,”
J. Fluid Mech.
,
653
, pp.
301
336
.
18.
Huang
,
W.-X.
, and
Sung
,
H. J.
,
2009
, “
An Immersed Boundary Method for Fluid Flexible Structure Interaction
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
33–36
), pp.
2650
2661
.
19.
Ryu
,
J.
,
Park
,
S. G.
, and
Sung
,
H. J.
,
2018
, “
Flapping Dynamics of Inverted Flags in a Side-by-Side Arrangement
,”
Int. J. Heat Fluid Flow
,
70
, pp.
131
140
.
20.
Park
,
S. G.
, and
Sung
,
H. J.
,
2018
, “
Hydrodynamics of Flexible Fins Propelled in Tandem, Diagonal, Triangular and Diamond Configurations
,”
J. Fluid Mech.
,
840
, pp.
154
189
.
21.
Albadawi
,
A.
,
Marry
,
S.
,
Breen
,
B.
,
Connolly
,
R.
, and
Delauré
,
Y.
,
2016
, “
An IBM-FSI Solver of Flexible Objects in Fluid Flow for Pumps Clogging Applications
,”
Ninth International Conference on Computational Fluid Dynamics
(
ICCFD9
), Istanbul, Turkey, July 11–15, pp.
1
22
.http://iccfd9.itu.edu.tr/assets/pdf/papers/ICCFD9-2016-108.pdf
22.
Tian
,
F.-B.
,
Dai
,
H.
,
Luo
,
H.
,
Doyle
,
J. F.
, and
Rousseau
,
B.
,
2014
, “
Fluid-Structure Interaction Involving Large Deformations: 3D Simulations and Applications to Biological Systems
,”
J. Comput. Phys.
,
258
, pp.
451
469
.
23.
Lee
,
I.
, and
Choi
,
H.
,
2015
, “
A Discrete-Forcing Immersed Boundary Method for the Fluid-Structure Interaction of an Elastic Slender Body
,”
J. Comput. Phys.
,
280
, pp.
529
546
.
24.
de Tullio
,
M.
, and
Pascazio
,
G.
,
2016
, “
A Moving-Least-Squares Immersed Boundary Method for Simulating the Fluid-Structure Interaction of Elastic Bodies With Arbitrary Thickness
,”
J. Comput. Phys.
,
325
, pp.
201
225
. (August),
25.
OpenCFD
,
2016
, “
The Open Source Computational Fluid Dynamics (CFD) Toolbox
,” ESI Group, Paris, France, http://openfoam.com/
26.
Issa
,
R.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
27.
Weller
,
H.
,
2012
, “
Controlling the Computational Modes of the Arbitrarily Structured c Grid
,”
Mon. Weather Rev.
,
140
(
10
), pp.
3220
3234
.
28.
Lysenko
,
D. A.
, and
Rian
,
K. R.
,
2014
, “
Large-Eddy Simulation of the Flow Over a Cylinder at Reynolds Number 2 × 104
,”
Flow Turbul. Combust.
,
92
(3), pp. 673–698.
29.
Krastev
,
V.
, and
Bella
,
G.
,
2012
, “
A Zonal Turbulence Modeling Approach for Ice Flow Simulation
,”
SAE Int. J. Engines
,
9
(
3
), pp. 1425–1436.
30.
Spalart
,
P. R.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
A
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings and on a Hybrid RANS/LES Approach
,”
Advances in DNS/LES: Proceedings of the First AFOSR International Conference on DNS/LES
, Louisiana Tech University, Ruston, Louisiana, USA, August 4–8, 1997, Greyden Press, Columbus, OH.
31.
Spalding
,
D.
,
1961
, “
A Single Formula for the Law of the Wall
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
455
458
.
32.
Fällström
,
K. E.
,
Gren
,
P.
, and
Mattsson
,
R.
,
2002
, “
Determination of Paper Stiffness and Anisotropy From Recorded Bending Waves in Paper Subjected to Tensile Forces
,”
NDT and E Int.
,
35
(
7
), pp.
465
472
.
33.
Virot
,
E.
,
Amandolese
,
X.
, and
Hémon
,
P.
,
2013
, “
Fluttering Flags: An Experimental Study of Fluid Forces
,”
J. Fluids Struct.
,
43
, pp.
385
401
.
34.
Siebert
,
T.
, and
Crompton
,
M. J.
,
2013
, “
Application of High Speed Digital Image Correlation for Vibration Mode Shape Analysis
,”
Application of Imaging Techniques to Mechanics of Materials and Structures
, Vol.
4
, Springer, Berlin, pp.
291
298
.
35.
Tabandeh-Khorshid
,
M.
,
Schultz
,
B.
,
Rohatgi
,
P.
, and
Elhajjar
,
R.
,
2016
, “
The Diametrically Loaded Cylinder for the Study of Nanostructured Aluminum-Graphene and Aluminum-Alumina Nanocomposites Using Digital Image Correlation
,”
Front. Mater.
,
3
, p.
22
.
36.
Specklin
,
M.
,
2018
, “
On the Assessment of Immersed Boundary Methods for Fluid-Structure Interaction Modelling: Application to Waste Water Pumps Design and the Inherent Clogging Issues
,” Ph.D. thesis, Dublin City University, Dublin, Ireland.
37.
Specklin
,
M.
,
2018
, “
A Versatile Immersed Boundary Method for Pump Design
,” Sulzer Management Ltd., Winterthur, Switzerland, White Paper, 1/2018.
38.
Gülich
,
J. F.
,
2008
,
Centrifugal Pumps
,
Springer
, Berlin.
39.
Feng
,
J.
,
Benra
,
F. K.
, and
Dohmen
,
H. J.
,
2009
, “
Unsteady Flow Visualization at Part-Load Conditions of a Radial Diffuser Pump: By PIV and CFD
,”
J. Visualization
,
12
(
1
), pp.
65
72
.
You do not currently have access to this content.