Quasi-two-dimensional (2D) modeling of unsteady flow is important for the accurate prediction of flow and pressure in pipeline systems. In this study, a generalized method is developed to consider various inline components such as junctions and inline valves for quasi-2D method of characteristic (MOC). The occurrence of vaporous cavitation is incorporated into the developed scheme under transient conditions. To address the discharge and pressure profile at the generalized component, a procedure is proposed to obtain the convergence satisfying the characteristic equations and hydraulic structure function. The validity of the developed method is tested for two different pipeline systems. Good agreements of transient pressure between simulations and experimental results are obtained, thus demonstrating the predictability of the developed method for junctions and inline valves with vaporous cavitation.

References

References
1.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
McInnis
,
D. A.
, and
Axworthy
,
D. H.
,
2015
, “
A Review of Water Hammer Theory and Practice
,”
ASME Appl. Mech. Rev.
,
58
(
1
), pp.
49
76
.
2.
Chaudhry
,
M. H.
,
1987
,
Applied Hydraulic Transients
,
Van Nostrand Reinhold
,
New York
.
3.
Wylie
,
E. B.
,
Streeter
,
V. L.
, and
Suo
,
L.
,
1993
,
Fluid Transients in Systems
,
Prentice Hall
,
New York
.
4.
Zielke
,
W.
,
1968
, “
Frequency Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
.
5.
Brunone
,
B.
,
Golia
,
U. M.
, and
Grecom
,
M.
,
1995
, “
Effects of Two-Dimensionality on Pipe Transients Modeling
,”
J. Hydraul. Eng.
,
121
(
12
), pp.
906
912
.
6.
Vardy
,
A. E.
,
Hwang
,
K. L.
, and
Brown
,
J. M.
,
1993
, “
A Weighting Function Model of Transient Turbulent Pipe Friction
,”
J. Hydraul. Res.
,
31
(
4
), pp.
533
548
.
7.
Riedelmeier
,
S.
,
Becker
,
S.
, and
Schlücker
,
E.
,
2014
, “
Damping of Water Hammer Oscillations—Comparison of 3D CFD and 1D Calculations Using Two Selected Models for Pipe Friction
,”
Proc. Appl. Math. Mech.
,
14
(
1
), pp.
705
706
.
8.
Martins
,
N. M. C.
,
Brunone
,
B.
,
Meniconi
,
S.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2017
, “
CFD and 1D Approaches for the Unsteady Friction Analysis of Low Reynolds Number Turbulent Flows
,”
J. Hydraul. Eng.
,
143
(
12
), p.
04017050
.
9.
Vardy
,
A. E.
, and
Hwang
,
K. L.
,
1991
, “
A Characteristic Model of Transient Friction in Pipes
,”
J. Hydraul. Res.
,
29
(
5
), pp.
669
685
.
10.
Pezzinga
,
G.
,
1999
, “
Quasi-2D Model for Unsteady Flow in Pipe Networks
,”
J. Hydraul. Eng.
,
125
(
7
), pp.
676
685
.
11.
Kobar
,
R.
,
Virag
,
Z.
, and
Savar
,
M.
,
2014
, “
Truncated Method of Characteristics for Quasi-Two-Dimensional Water Hammer Model
,”
J. Hydraul. Eng.
,
140
(
6
), p.
04014013
.
12.
Tazraei
,
P.
, and
Riasi
,
A.
,
2015
, “
Quasi-Two-Dimensional Numerical Analysis of Fast Transient Flows Considering Non-Newtonian Effects
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
011203
.
13.
Wahba
,
E. M.
,
2009
, “
Turbulence Modeling for Two-Dimensional Water Hammer Simulations in the Low Reynolds Number Range
,”
Comput. Fluids
,
38
(
9
), pp.
1763
1770
.
14.
Shamloo
,
H.
, and
Mousavifard
,
M.
,
2015
, “
Turbulence Behaviour Investigation in Transient Flows
,”
J. Hydraul. Res.
,
53
(
1
), pp.
83
92
.
15.
Martins
,
N. M. C.
,
Brunone
,
B.
,
Meniconi
,
S.
,
Ramos
,
H. M.
, and
Covas
,
D. I. C.
,
2018
, “
Efficient Computational Fluid Dynamics Model for Transient Laminar Flow Modeling: Pressure Wave Propagation and Velocity Profile Changes
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011102
.
16.
Che
,
T.
,
Duan
,
H.
,
Lee
,
P. J.
,
Meniconi
,
S.
,
Pan
,
B.
, and
Brunone
,
B.
,
2018
, “
Radial Pressure Wave Behavior in Transient Laminar Pipe Flows Under Different Flow Perturbations
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101203
.
17.
Pezzinga
,
G.
, and
Cannizzaro
,
D.
,
2014
, “
Analysis of Transient Vaporous Cavitation in Pipes by a Distributed 2D Model
,”
J. Hydraul. Eng.
,
140
(
6
), p.
04014019
.
18.
Pezzinga
,
G.
, and
Santoro
,
V. C.
,
2017
, “
Unitary Framework for Hydraulic Mathematical Models of Transient Cavitation in Pipes: Numerical Analysis of 1D and 2D Flow
,”
J. Hydraul. Eng.
,
143
(
12
), p.
04017053
.
19.
Gao
,
H.
,
Tang
,
X.
,
Li
,
X.
, and
Shi
,
X.
,
2018
, “
Analyses of 2D Transient Models for Vaporous Cavitating Flows in Reservoir-Pipeline-Valve Systems
,”
J. Hydroinform.
,
20
(
4
), pp.
934
945
.
20.
Duan
,
H. F.
,
Ghidaoui
,
M. S.
, and
Tung
,
Y. K.
,
2009
, “
An Efficient Quasi-2D Simulation of Waterhammer in Complex Pipe Systems
,”
ASME J. Fluids Eng.
,
131
(
8
), p.
081105
.
21.
Nixon
,
W.
,
Karney
,
B.
,
Zhao
,
M.
,
Ghidaoui
,
M. S.
, and
Naser
,
G.
,
2004
, “
Boundary Condition Representation and Behaviour in Transient 2D Models
,”
Nineth International Conference on Pressure Surges
, Chester, UK, Mar. 24–26, pp.
539
553
.
22.
Kim
,
H. J.
, and
Kim
,
S. H.
,
2018
, “
Two Dimensional Cavitation Waterhammer Model for a Reservoir-Pipeline-Valve System
,”
J. Hydraul. Res.
, (epub).
23.
Zhao
,
M.
, and
Ghidaoui
,
S.
,
2003
, “
Efficient Quasi-Two-Dimensional Model for Water Hammer Problems
,”
J. Hydraul. Res.
,
129
(
12
), pp.
1007
1013
.
24.
Kita
,
Y.
,
Adachi
,
Y.
, and
Hirose
,
K.
,
1980
, “
Periodically Oscillating Turbulent Flow in a Pipe
,”
Bull. JSME
,
23
(
179
), pp.
656
664
.
25.
Kiefer
,
J.
,
1953
, “
Sequential Minimax Search for a Maximum
,”
Proc. Am. Math. Soc.
,
4
(
3
), pp.
502
506
.
26.
Fisher Controls International
,
2001
,
Control Valve Handbook
,
Emerson Process Management with Fisher Controls International
,
Marshalltown, IA
.
27.
Brunone
,
B.
, and
Morelli
,
L.
,
1999
, “
Automatic Control Valve Induced Transients in an Operative Pipe System
,”
J. Hydraul. Eng.
,
125
(
5
), pp.
534
542
.
28.
Ferreira
,
J. P. B. C. C.
,
Martins
,
N. M. C.
, and
Covas
,
D. I. C.
,
2018
, “
Ball Valve Behavior Under Steady and Unsteady Conditions
,”
J. Hydraul. Eng.
,
144
(
4
), p.
04018005
.
You do not currently have access to this content.