A computational methodology, which combines a computational fluid dynamics (CFD) technique and a computational structural dynamics (CSD) technique, is employed to design a deformable foil whose kinematics is inspired by the propulsive motion of the fin or the tail of a fish or a cetacean. The unsteady incompressible Navier–Stokes equations are solved using a second-order accurate finite difference method and an immersed-boundary method to effectively impose boundary conditions on complex moving boundaries. A finite element-based structural dynamics solver is employed to compute the deformation of the foil due to interaction with fluid. The integrated CFD–CSD simulation capability is coupled with a surrogate management framework (SMF) for nongradient-based multivariable optimization in order to optimize flapping kinematics and flexibility of the foil. The flapping kinematics is manipulated for a rigid nondeforming foil through the pitching amplitude and the phase angle between heaving and pitching motions. The flexibility is additionally controlled for a flexible deforming foil through the selection of material with a range of Young's modulus. A parametric analysis with respect to pitching amplitude, phase angle, and Young's modulus on propulsion efficiency is presented at Reynolds number of 1100 for the NACA 0012 airfoil.

References

1.
Techet
,
A.
,
Lim
,
K.
,
Hover
,
F.
, and
Triantafyllou
,
M.
,
2005
, “
Hydrodynamic Performance of a Biologically Inspired Three-Dimensional Flapping Foil
,”
14th International Symposium Unmanned Untethered Submersible Technology
, Durham, NH, Aug. 21–24, pp. 523–537.http://web.mit.edu/ahtechet/www/papers/TECHET_UUST05.pdf
2.
Triantafyllou
,
G. S.
,
Triantafyllou
,
M.
, and
Grosenbaugh
,
M.
,
1993
, “
Optimal Thrust Development in Oscillating Foils With Application to Fish Propulsion
,”
J. Fluids Struct.
,
7
(
2
), pp.
205
224
.
3.
Lauder
,
G. V.
,
Madden
,
P. G.
,
Mittal
,
R.
,
Dong
,
H.
, and
Bozkurttas
,
M.
,
2006
, “
Locomotion With Flexible Propulsors: I. Experimental Analysis of Pectoral Fin Swimming in Sunfish
,”
Bioinspiration Biomimetics
,
1
(
4
), pp.
S25
S34
.
4.
Bozkurttas
,
M.
,
Mittal
,
R.
,
Dong
,
H.
,
Lauder
,
G.
, and
Madden
,
P.
,
2009
, “
Low-Dimensional Models and Performance Scaling of a Highly Deformable Fish Pectoral Fin
,”
J. Fluid Mech.
,
631
, pp.
311
342
.
5.
Standen
,
E.
, and
Lauder
,
G. V.
,
2005
, “
Dorsal and Anal Fin Function in Bluegill Sunfish Lepomis Macrochirus: Three-Dimensional Kinematics During Propulsion and Maneuvering
,”
J. Exp. Biol.
,
208
(
14
), pp.
2753
2763
.
6.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Lauder
,
G.
, and
Madden
,
P.
,
2006
, “
Locomotion With Flexible Propulsors: II. Computational Modeling of Pectoral Fin Swimming in Sunfish
,”
Bioinspiration Biomimetics
,
1
(
4
), pp.
S35
S41
.
7.
Floryan
,
D.
,
Van Buren
,
T.
,
Rowley
,
C. W.
, and
Smits
,
A. J.
,
2017
, “
Scaling the Propulsive Performance of Heaving and Pitching Foils
,”
J. Fluid Mech.
,
822
, pp.
386
397
.
8.
Fishman
,
G.
,
Wolfinger
,
M.
, and
Rockwell
,
D.
,
2017
, “
The Structure of a Trailing Vortex From a Perturbed Wing
,”
J. Fluid Mech.
,
824
, pp.
701
721
.
9.
Bottom
,
R. G.
, II.
,
Borazjani
,
I.
,
Blevins
,
E.
, and
Lauder
,
G.
,
2016
, “
Hydrodynamics of Swimming in Stingrays: Numerical Simulations and the Role of the Leading-Edge Vortex
,”
J. Fluid Mech.
,
788
, pp.
407
443
.
10.
Andersen
,
A.
,
Bohr
,
T.
,
Schnipper
,
T.
, and
Walther
,
J. H.
,
2017
, “
Wake Structure and Thrust Generation of a Flapping Foil in Two-Dimensional Flow
,”
J. Fluid Mech.
,
812
, p. R4.
11.
Kim
,
D.
,
Hussain
,
F.
, and
Gharib
,
M.
,
2013
, “
Vortex Dynamics of Clapping Plates
,”
J. Fluid Mech.
,
714
, pp.
5
23
.
12.
Tam
,
D.
,
2015
, “
Flexibility Increases Lift for Passive Fluttering Wings
,”
J. Fluid Mech.
,
765
, p. R2.
13.
Siala
,
F. F.
,
Totpal
,
A. D.
, and
Liburdy
,
J. A.
,
2016
, “
Characterization of Vortex Dynamics in the Near Wake of an Oscillating Flexible Foil
,”
ASME J. Fluids Eng.
,
138
(
10
), p.
101202
.
14.
Park
,
H.
,
Park
,
Y.-J.
,
Lee
,
B.
,
Cho
,
K.-J.
, and
Choi
,
H.
,
2016
, “
Vortical Structures Around a Flexible Oscillating Panel for Maximum Thrust in a Quiescent Fluid
,”
J. Fluids Struct.
,
67
, pp.
241
260
.
15.
David
,
M. J.
,
Govardhan
,
R.
, and
Arakeri
,
J.
,
2017
, “
Thrust Generation From Pitching Foils With Flexible Trailing Edge Flaps
,”
J. Fluid Mech.
,
828
, pp.
70
103
.
16.
Zhu
,
X.
,
He
,
G.
, and
Zhang
,
X.
,
2014
, “
How Flexibility Affects the Wake Symmetry Properties of a Self-Propelled Plunging Foil
,”
J. Fluid Mech.
,
751
, pp.
164
183
.
17.
Shinde
,
S. Y.
, and
Arakeri
,
J. H.
,
2014
, “
Flexibility in Flapping Foil Suppresses Meandering of Induced Jet in Absence of Free Stream
,”
J. Fluid Mech.
,
757
, pp.
231
250
.
18.
Anderson
,
J.
,
Streitlien
,
K.
,
Barrett
,
D.
, and
Triantafyllou
,
M.
,
1998
, “
Oscillating Foils of High Propulsive Efficiency
,”
J. Fluid Mech.
,
360
, pp.
41
72
.
19.
Lewin
,
G. C.
, and
Haj-Hariri
,
H.
,
2003
, “
Modelling Thrust Generation of a Two-Dimensional Heaving Airfoil in a Viscous Flow
,”
J. Fluid Mech.
,
492
, pp.
339
362
.
20.
Wang
,
Z. J.
,
2000
, “
Vortex Shedding and Frequency Selection in Flapping Flight
,”
J. Fluid Mech.
,
410
, pp.
323
341
.
21.
Guglielmini
,
L.
,
2004
, “
Modeling of Thrust Generating Foils
,”
Ph.D. thesis
, University of Genoa, Genoa, Italy.http://seagrant.mit.edu/pubs_desc.php?media_ID=1983
22.
Kim
,
J.
,
Kim
,
D.
, and
Choi
,
H.
,
2001
, “
An Immersed-Boundary Finite Volume Method for Simulations of Flow in Complex Geometries
,”
J. Comput. Phys.
,
171
(
1
), pp.
132
150
.
23.
Marsden
,
A. L.
,
Wang
,
M.
,
Dennis
,
J. E.
, and
Moin
,
P.
,
2004
, “
Optimal Aeroacoustic Shape Design Using the Surrogate Management Framework
,”
Optim. Eng.
,
5
(
2
), pp.
235
262
.
24.
Lee
,
J.
,
2012
, “
Design of Fluid-Structure Interaction Using Computational Simulations
,” Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA.
25.
Soueid
,
H.
,
Guglielmini
,
L.
,
Airiau
,
C.
, and
Bottaro
,
A.
,
2009
, “
Optimization of the Motion of a Flapping Airfoil Using Sensitivity Functions
,”
Comput. Fluids
,
38
(
4
), pp.
861
874
.
26.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F.
,
Vargas
,
A.
, and
von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.
27.
Miranda
,
I.
,
Ferencz
,
R. M.
, and
Hughes
,
T. J.
,
1989
, “
An Improved Implicit-Explicit Time Integration Method for Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
18
(
5
), pp.
643
653
.
28.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
29.
Pedro
,
G.
,
Suleman
,
A.
, and
Djilali
,
N.
,
2003
, “
A Numerical Study of the Propulsive Efficiency of a Flapping Hydrofoil
,”
Int. J. Numer. Methods Fluids
,
42
(
5
), pp.
493
526
.
You do not currently have access to this content.