Particle image velocimetry (PIV) of four cylinders with different cross sections were performed in a recirculating water channel at Reynolds numbers of 5000 and 10,000. The cylinders were split into two distinct categories; semicircular and convex-edged triangular (c-triangular) prisms which have a smooth diverging fore-face and a flat, backward facing step aft-face, and a trapezoid which has a flat fore face and a backward-facing step aft-face. The resulting streamwise and transverse velocity vectors (u and v, respectively) were analyzed to provide a qualitative comparison of the bluff body wakes to the circular cylinder, which is the standard upstream stationary body in wake-induced vibration (WIV) energy technology. The Reynolds stresses, turbulent kinetic energy (TKE), mean spanwise vorticity, and the energy in the fluctuating component of the wake were compared. The main findings are: (i) a convex fore-face and a backward-facing step aft face are more effective at converting the flow energy to temporal wake energy (+20%) compared to a circular cylinder, (ii) a trapezoid type shape is less effective at converting flow energy to temporal wake energy (−40%) compared to a circular cylinder, (iii) increasing Reynolds number reduces the efficiency of conversion of upstream flow energy to downstream transverse temporal energy. Utilizing stationary upstream bodies such as the semicircle and the c-triangle can result in concentrating more energy in the fluctuating components for the downstream transversely vibrating bluff body in a WIV system, and hence can realize in more efficient WIV technology.

References

1.
Zdravkovich
,
M. M.
,
1997
, “
Flow Around Circular Cylinders; Volume 1. Fundamentals
,”
J. Fluid Mech.
,
350
, pp.
377
378
.
2.
Derakhshandeh
,
J. F.
,
Arjomandi
,
M.
,
Cazzolato
,
B.
, and
Dally
,
B.
,
2014
, “
Experimental and Computational Investigation of Wake Induced Vibration
,”
19th Australasian Fluid Mechanics Conference, Melbourne
, Australia, Dec. 10.https://www.researchgate.net/publication/266738203_Experimental_and_Computational_Investigation_of_Wake-Induced_Vibration
3.
Bernitsas
,
M. M.
,
Raghavan
,
K.
,
Ben-Simon
,
Y.
, and
Garcia
,
E. M.
,
2008
, “
VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), pp.
1697
1712
.
4.
Assi
,
G. R. S.
,
2009
, “
Mechanisms for Flow-Induced Vibration of Interfering Bluff Bodies
,”
Ph.D. thesis
, Imperial College London, London.http://www.ndf.poli.usp.br/~gassi/GAssi_PhD_2009.pdf
5.
Derakhshandeh
,
J. F.
,
Arjomandi
,
M.
,
Dally
,
B.
, and
Cazzolato
,
B.
,
2014
, “
The Effect of Arrangements of Two Circular Cylinders on the Maximum Efficiency of Vortex-Induced Vibration Power Using a Scale-Adaptive Simulation Model
,”
J. Fluids Struct.
,
49
, pp.
654
666
.
6.
Bernitsas
,
M. M.
,
2011
, “
The VIVACE Convertor—Enhancing Flow Induced Motions to Harness Hydrokinetic Energy in an Environmentally Compatible Way
,” University of Michigan, Boulder, CO.
7.
Kinaci
,
O. K.
,
Lakka
,
S.
,
Sun
,
H.
, and
Bernitsas
,
M. M.
,
2016
, “
Effect of Tip-Flow on Vortex Induced Vibration of Circular Cylinders for Re < 1.2 * 10 5
,”
Ocean Eng.
,
117
, pp.
130
142
.
8.
Ding
,
L.
,
Zhang
,
L.
,
Kim
,
E. S.
, and
Bernitsas
,
M. M.
,
2015
, “
URANS vs. Experiments of Flow Induced Motions of Multiple Circular Cylinders With Passive Turbulence Control
,”
J. Fluids Struct.
,
54
, pp.
612
628
.
9.
Xu
,
W.
,
Ji
,
C.
,
Sun
,
H.
,
Ding
,
W.
, and
Bernitsas
,
M. M.
, 2017, “
Flow-Induced Vibration (FIV) and Hydrokinetic Power Conversion of Two Staggered, Low Mass-Ratio Cylinders, With Passive Turbulence Control in the TrSL3 Flow Regime (2.5 × 104 < Re < 1.2 × 105)
,”
ASME
Paper No. OMAE2017-62693.
10.
Lan
,
K.
,
Sun
,
H.
, and
Bernitsas
,
M. M.
,
2018
, “
Two Tandem Cylinders With Passive Turbulence Control in Flow-Induced Vibration: Relation of Oscillation Patterns to Frequency Response
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
3
), p.
031803
.
11.
Ji
,
C.
,
Xu
,
W.
,
Sun
,
H.
,
Wang
,
R.
,
Ma
,
C.
, and
Bernitsas
,
M. M.
,
2018
, “
Interactive Flow-Induced Vibrations of Two Staggered, Low Mass-Ratio Cylinders in the TrSL3 Flow Regime (2.5 × 104 < Re < 1.2 × 105): Smooth Cylinders
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
4
), p.
041801
.
12.
Ma
,
C.
,
Sun
,
H.
, and
Bernitsas
,
M. M.
,
2018
, “
Nonlinear Piecewise Restoring Force in Hydrokinetic Power Conversion Using Flow-Induced Vibrations of Two Tandem Cylinders
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
4
), p.
041901
.
13.
Wang
,
D.-A.
, and
Ko
,
H.-H.
,
2010
, “
Piezoelectric Energy Harvesting From Flow-Induced Vibration
,”
J. Micromech. Microeng.
,
20
(
2
), p.
025019
.
14.
Weinstein
,
L. A.
,
Cacan
,
M. R.
,
So
,
P. M.
, and
Wright
,
P. K.
,
2012
, “
Vortex Shedding Induced Energy Harvesting From Piezoelectric Materials in Heating, Ventilation and Air Conditioning Flows
,”
Smart Mater. Struct.
,
21
(
4
), p.
045003
.
15.
Hobbs
,
W. B.
, and
Hu
,
D. L.
,
2012
, “
Tree-Inspired Piezoelectric Energy Harvesting
,”
J. Fluids Struct.
,
28
, pp.
103
114
.
16.
Wei
,
Z. A.
, and
Zheng
,
Z. C.
,
2018
, “
Fluid–Structure Interaction Simulation on Energy Harvesting From Vortical Flows by a Passive Heaving Foil
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011105
.
17.
Derakhshandeh
,
J. F.
,
Arjomandi
,
M.
,
Dally
,
B.
, and
Cazzolato
,
B.
,
2016
, “
Flow-Induced Vibration of an Elastically Mounted Airfoil Under the Influence of the Wake of a Circular Cylinder
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
58
72
.
18.
Derakhshandeh
,
J. F.
,
Arjomandi
,
M.
,
Dally
,
B.
, and
Cazzolato
,
B.
,
2015
, “
Harnessing Hydro-Kinetic Energy From Wake Induced Vibration Using Virtual Mass Spring Damper System
,”
J. Ocean Eng.
,
108
, pp.
115
128
.
19.
Blevins
,
R. D.
, and
Coughran
,
C. S.
,
2009
, “
Experimental Investigation of Vortex-Induced Vibration in One and Two Dimensions With Variable Mass, Damping, and Reynolds Number
,”
ASME J. Fluids Eng.
,
131
(
10
), p.
101202
.
20.
Bernitsas
,
M. M.
,
Ben-Simon
,
Y.
,
Raghavan
,
K.
, and
Garcia
,
E. M.
,
2009
, “
The VIVACE Converter: Model Tests at High Damping and Reynolds Number Around 105
,”
ASME J. Offshore Mech. Arct. Eng.
,
131
(
1
), pp.
1
15
.
21.
Ding
,
L.
,
Zhang
,
L.
,
Wu
,
C.
,
Mao
,
X.
, and
Jiang
,
D.
,
2015
, “
Flow Induced Motion and Energy Harvesting of Bluff Bodies With Different Cross Sections
,”
Energy Convers. Manage.
,
91
, pp.
416
426
.
22.
Manickam Sureshkumar
,
E.
,
Arjomandi
,
M.
,
Cazzolato
,
B. S.
, and
Dally
,
B. B.
,
2018
, “
Spatial and Temporal Concentration of Hydrokinetic Energy in the Wake of a Bluff Body
,”
Ocean Eng.
,
164
, pp.
181
198
.
23.
Alonso
,
G.
, and
Meseguer
,
J.
,
2006
, “
A Parametric Study of the Galloping Stability of Two-Dimensional Triangular Cross-Section Bodies
,”
J. Wind Eng. Ind. Aerodyn.
,
94
(
4
), pp.
241
253
.
24.
Alonso
,
G.
,
Meseguer
,
J.
, and
Pérez-Grande
,
I.
,
2005
, “
Galloping Instabilities of Two-Dimensional Triangular Cross-Section Bodies
,”
Exp. Fluids
,
38
(
6
), pp.
789
795
.
25.
Igarashi
,
T.
,
1984
, “
Characteristics of the Flow Around Two Circular Cylinders Arranged in Tandem: 2nd Report, Unique Phenomenon at Small Spacing
,”
Bull. JSME
,
27
(
233
), pp.
2380
2387
.
26.
Zdravkovich
,
M. M.
, and
Bearman
,
P. W.
,
1998
,
Flow Around Circular Cylinders—Fundamentals
, Vol. 1,
Oxford University Press
,
New York
.
27.
Carmo
,
B. S.
,
Sherwin
,
S. J.
,
Bearman
,
P. W.
, and
Willden
,
R. H.
,
2008
, “
Wake Transition in the Flow Around Two Circular Cylinders in Staggered Arrangements
,”
J. Fluid Mech.
,
597
, pp.
1
29
.
28.
Ong
,
L.
, and
Wallace
,
J.
,
1996
, “
The Velocity Field of the Turbulent Very Near Wake of a Circular Cylinder
,”
Exp. Fluids
,
20
(
6
), pp.
441
453
.
29.
Rajagopalan
,
S.
, and
Antonia
,
R.
,
2005
, “
Flow Around a Circular Cylinder—Structure of the Near Wake Shear Layer
,”
Exp. Fluids
,
38
(
4
), pp.
393
402
.
30.
Bloor
,
M. S.
, and
Gerrard
,
J.
,
1966
, “
Measurements on Turbulent Vortices in a Cylinder Wake
,”
Proc. R. Soc. London A
,
294
(
1438
), pp.
319
342
.
31.
Cantwell
,
B.
,
1975
, “
A Flying Hot Wire Study of the Turbulent Near Wake of a Circular Cylinder at Reynolds Number of 140,000
,”
Ph.D. thesis
, California Institute of Technology, Pasadena, CA.https://thesis.library.caltech.edu/4313/
32.
Cantwell
,
B.
, and
Coles
,
D.
,
1983
, “
An Experimental Study of Entrainment and Transport in the Turbulent Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
136
(
1
), pp.
321
374
.
33.
Gaudin
,
E.
,
Protas
,
B.
,
Goujon-Durand
,
S.
,
Wojciechowski
,
J.
, and
Wesfreid
,
J.
,
1998
, “
Spatial Properties of Velocity Structure Functions in Turbulent Wake Flows
,”
Phys. Rev. E
,
57
(
1
), p.
R9
.
34.
Kourta
,
A.
,
Boisson
,
H.
,
Chassaing
,
P.
, and
Minh
,
H. H.
,
1987
, “
Nonlinear Interaction and the Transition to Turbulence in the Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
181
(
1
), pp.
141
161
.
35.
Lourenco
,
L.
, and
Shih
,
C.
,
1993
, “
Characteristics of the Plane Turbulent Near Wake of a Circular Cylinder-A Particle Image Velocimetry Study
,” Private communication data obtained from Beaudan, P., and Moin, P., 1994, “Numerical Experiments on the Flow Past a Circular Cylinder at Sub-Critical Reynolds Number,” Stanford University, Stanford, CA).
36.
Lin
,
J.-C.
,
Towfighi
,
J.
, and
Rockwell
,
D.
,
1995
, “
Instantaneous Structure of the Near-Wake of a Circular Cylinder: On the Effect of Reynolds Number
,”
J. Fluids Struct.
,
9
(
4
), pp.
409
418
.
37.
Norberg
,
C.
,
1998
, “
LDV-Measurements in the Near Wake of a Circular Cylinder
,”
ASME
Paper No. FEDSM98-521.https://www.researchgate.net/publication/286143448_LDV-measurements_in_the_near_wake_of_a_circular_cylinder
38.
Ozgoren
,
M.
,
Pinar
,
E.
,
Sahin
,
B.
, and
Akilli
,
H.
,
2011
, “
Comparison of Flow Structures in the Downstream Region of a Cylinder and Sphere
,”
Int. J. Heat Fluid Flow
,
32
(
6
), pp.
1138
1146
.
39.
Dong
,
S.
,
Karniadakis
,
G.
,
Ekmekci
,
A.
, and
Rockwell
,
D.
,
2006
, “
A Combined Direct Numerical Simulation–Particle Image Velocimetry Study of the Turbulent Near Wake
,”
J. Fluid Mech.
,
569
, pp.
185
207
.
40.
Rosetti
,
G. F.
,
Vaz
,
G.
, and
Fujarra
,
A. L.
,
2012
, “
URANS Calculations for Smooth Circular Cylinder Flow in a Wide Range of Reynolds Numbers: Solution Verification and Validation
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
121103
.
41.
Blevins
,
R. D.
,
1997
,
Flow-Induced Vibration
,
Van Nostrand Reinhold
,
New York
.
42.
Venugopal
,
A.
,
Agrawal
,
A.
, and
Prabhu
,
S.
,
2017
, “
Investigations on Bluff Bodies as Improved Vortex Shedders Placed Inside a Circular Pipe
,”
ASME J. Fluids Eng.
,
139
(
4
), p.
041204
.
43.
Keane
,
R. D.
, and
Adrian
,
R. J.
, 1990, “
Optimization of Particle Image Velocimeters
,”
Proc. Orl-DL Tentative, Int. Soc. Opt. Photonics
,
1404
, pp.
139
159
.
44.
Ozkan
,
G. M.
,
Firat
,
E.
, and
Akilli
,
H.
,
2017
, “
Control of Vortex Shedding Using a Screen Attached on the Separation Point of a Circular Cylinder and Its Effect on Drag
,”
ASME J. Fluids Eng.
,
139
(
7
), p.
071107
.
45.
Westerweel
,
J.
, and
Scarano
,
F.
,
2005
, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1096
1100
.
46.
Thielicke
,
W.
, and
Stamhuis
,
E.
,
2014
, “
PIVlab–Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB
,”
J. Open Res. Software
,
2
(
1
), p. e30.https://openresearchsoftware.metajnl.com/articles/10.5334/jors.bl/
47.
Duncan
,
J.
,
Dabiri
,
D.
,
Hove
,
J.
, and
Gharib
,
M.
,
2010
, “
Universal Outlier Detection for Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) Data
,”
Meas. Sci. Technol.
,
21
(
5
), p.
057002
.
48.
Ozgoren
,
M.
,
2006
, “
Flow Structure in the Downstream of Square and Circular Cylinders
,”
Flow Meas. Instrum.
,
17
(
4
), pp.
225
235
.
49.
Westerweel
,
J.
,
1993
, “
Digital Particle Image Velocimetry: Theory and Application
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
50.
Keane
,
R. D.
, and
Adrian
,
R. J.
, 1989, “
Optimization of Particle Image Velocimeters
,”
ICALEO'89: Optical Methods in Flow and Particle Diagnostics, International Society for Optics and Photonics
, Orlando, FL, Oct. 15–20, pp.
139
160
.
51.
Hart
,
D. P.
,
2000
, “
PIV Error Correction
,”
Exp. Fluids
,
29
(
1
), pp.
13
22
.
52.
Nakamura
,
Y.
,
1996
, “
Vortex Shedding From Bluff Bodies and a Universal Strouhal Number
,”
J. Fluids Struct.
,
10
(
2
), pp.
159
171
.
53.
Cimarelli
,
A.
,
Leonforte
,
A.
, and
Angeli
,
D.
,
2018
, “
Direct Numerical Simulation of the Flow Around a Rectangular Cylinder at a Moderately High Reynolds Number
,”
J. Wind Eng. Ind. Aerodyn.
,
174
, pp.
39
49
.
54.
He
,
G. S.
,
Li
,
N.
, and
Wang
,
J. J.
,
2014
, “
Drag Reduction of Square Cylinders With Cut-Corners at the Front Edges
,”
Exp. Fluids
,
55
(
6
), p.
1745
.
You do not currently have access to this content.