Due to the deficiency of the research on parallel foils, the parallel configuration of foils is concerned and the effects of motion parameters on energy extraction are systematically discussed in the present study. The foils undergo combined plunging and pitching motions. The effects of motion parameters (pitching amplitude, plunging amplitude, reduced frequency, and spacing between foils) in wide range are investigated at Re = 1100 through two-dimensional (2D) unsteady laminar flow simulations. The features of power output and efficiency changing with these motion parameters as well as the evolution of the vortex fields are gained. The principle that how motion parameters affecting energy extraction performance is studied. The extraction performance of parallel foils and single foil is compared at the optimal working parameters of the single foil. Numerical results indicate the optimal extraction performance of the parallel foils is superior to that of the single foil. CPm improves by 6.87% relatively. Therefore, it reveals that the parallel foils can perform the better extraction characteristics than the single foil by controlling parameters.

References

References
1.
McKinney
,
W.
, and
DeLaurier
,
J.
,
1981
, “
The Wingmill: An Oscillating-Wing Windmill
,”
J. Energy
,
5
(
2
), pp.
109
115
.
2.
Jones
,
K. D.
, and
Platzer
,
M. F.
,
1997
, “
Numerical Computation of Flapping-Wing Propulsion and Power Extraction
,”
AIAA
Paper No. 97-0826.
3.
Zhu
,
Q.
,
2011
, “
Optimal Frequency for Flow Energy Harvesting of a Flapping Foil
,”
J. Fluid Mech.
,
675
, pp.
495
517
.
4.
Isogai
,
K.
,
Yamasaki
,
M.
,
Matsubara
,
M.
, and
Asaoka
,
T.
,
2003
, “
Design Study of Elastically Supported Flapping Wing Power Generator
,”
International Forum on Aeroelasticity & Structural Dynamics
,
Savannah, Georgia
,
June 10–13
, pp.
4
6
.
5.
Abiru
,
H.
, and
Yoshitake
,
A.
,
2011
, “
Study on a Flapping Wing Hydroelectric Power Generation System
,”
J. Environ. Eng.
,
6
(
1
), pp.
178
186
.
6.
Jones
,
K. D.
,
Lindsey
,
K.
, and
Platzer
,
M. F.
,
2003
, “
An Investigation of the Fluid-Structure Interaction in an Oscillating-Wing Micro-Hydropower Generator
,”
Phys. At. Nucl.
,
65
(
2
), pp.
325
328
.https://www.witpress.com/Secure/elibrary/papers/FSI03/FSI03008FU.pdf
7.
Kim
,
J.
,
Quang
,
L. T.
,
Hwan
,
K. J.
,
Ebenezer
,
S. P.
,
Hartarto
,
T. I.
, and
Kang
,
T.
,
2015
, “
Experimental and Numerical Study of a Dual Configuration for a Flapping Tidal Current Generator
,”
Bioinspiration Biomimetics
,
10
(
4
), pp.
1
16
.
8.
Kinsey
,
T.
, and
Dumas
,
G.
,
2010
, “
Testing and Analysis of an Oscillating Hydrofoils Turbine Concept
,”
ASME
Paper No. FEDSM-ICNMM2010-30869.
9.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
, “
Computational Fluid Dynamics Analysis of a Hydrokinetic Turbine Based on Oscillating Hydrofoils
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021104
.
10.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
, “
Optimal Tandem Configuration for Oscillating-Foils Hydrokinetic Turbine
,”
ASME J. Fluids Eng.
,
134
(
3
), p.
031103
.
11.
Karbasian
,
H. R.
,
Esfahani
,
J. A.
, and
Barati
,
E.
,
2015
, “
Simulation of Power Extraction From Tidal Currents by Flapping Foil Hydrokinetic Turbines in Tandem Formation
,”
Renewable Energy
,
81
, pp.
816
824
.
12.
Liu
,
P.
,
2015
, “
WIG (Wing-in-Ground) Effect Dual-Foil Turbine for High Renewable Energy Performance
,”
Energy
,
83
, pp.
366
378
.
13.
Wu
,
J.
,
Qiu
,
Y. L.
,
Shu
,
C.
, and
Zhao
,
N.
,
2014
, “
Pitching-Motion-Activated Flapping Foil Near Solid Walls for Power Extraction: A Numerical Investigation
,”
Phys. Fluids
,
26
(
8
), pp.
147
155
.
14.
Isogai
,
K.
, and
Abiru
,
H.
,
2012
, “
Study of Multi-Wing Configurations of Elastically Supported Flapping Wing Power Generator
,”
Jpn. Soc. Aeronaut. Space Sci.
,
55
(
2
), pp.
133
142
.
15.
Wernert
,
P.
,
Geissler
,
W.
,
Raffel
,
M.
, and
Kompenhans
,
J.
,
1996
, “
Experimental and Numerical Investigations of Dynamic Stall on a Pitching Airfoil
,”
AIAA J.
,
34
(
5
), pp.
982
989
.
16.
Lee
,
T.
, and
Gerontakos
,
P.
,
2004
, “
Investigation of Flow Over an Oscillating Airfoil
,”
J. Fluid Mech.
,
512
(
512
), pp.
313
341
.
17.
Dumas
,
G.
, and
Kinsey
,
T.
,
2006
, “
Eulerian Simulations of Oscillating Airfoils in Power Extraction Regime
,”
Advances in Fluid Mechanics, Vol. VI
, WIT Press, Southampton, UK, pp.
245
254
.
18.
Kinsey
,
T.
, and
Dumas
,
G.
,
2008
, “
Parametric Study of an Oscillating Airfoil in a Power-Extraction Regime
,”
AIAA J.
,
46
(
6
), pp.
1318
1330
.
19.
Xiao
,
Q.
,
Liao
,
W.
,
Yang
,
S.
, and
Peng
,
Y.
,
2012
, “
How Motion Trajectory Affects Energy Extraction Performance of a Biomimic Energy Generator With an Oscillating Foil
,”
Renewable Energy
,
37
(
1
), pp.
61
75
.
20.
Kinsey
,
T.
, and
Dumas
,
G.
,
2014
, “
Optimal Operating Parameters for an Oscillating Foil Turbine at Reynolds Number 500,000
,”
AIAA J.
,
52
(
9
), pp.
1885
1895
.
21.
Young
,
J.
,
Ashraf
,
M.
,
Lai
,
J.
, and
Platzer
,
M.
,
2010
, “
Numerical Simulation of Flow-Driven Flapping-Wing Turbines for Wind and Water Power Generation
,”
Australasian Fluid Mechanics Conference
,
Auckland, New Zealand
,
Dec. 5–9
, pp.
449
452
22.
Heathcote
,
S.
,
Wang
,
Z.
, and
Gursul
,
I.
,
2008
, “
Effect of Spanwise Flexibility on Flapping Wing Propulsion
,”
J. Fluids Struct.
,
24
(
2
), pp.
183
199
.
23.
Ol
,
M. V.
,
2007
, “
Vortical Structures in High Frequency Pitch and Plunge at Low Reynolds Number
,”
AIAA
Paper No. 2007-4233.
24.
Fenercioglu
,
I.
,
Zaloglu
,
B.
,
Young
,
J.
,
Ashraf
,
M.
,
Lai
,
J.
, and
Platzer
,
M. F.
,
2014
, “
Experimental and Computational Investigation of the Flow Through an Oscillating-Wing Power Generator
,”
AIAA
Paper No. 2014-1283.
25.
Bos
,
F. M.
,
Lentink
,
D.
,
Oudheusden
,
B. W. V.
, and
Bijl
,
H.
,
2008
, “
Influence of Wing Kinematics on Aerodynamic Performance in Hovering Insect Flight
,”
J. Fluid Mech.
,
594
(
594
), pp.
341
368
.
26.
Ashraf
,
M. A.
,
Young
,
J.
, and
Lai
,
J. C. S.
,
2011
, “
Reynolds Number, Thickness and Camber Effects on Flapping Airfoil Propulsion
,”
J. Fluids Struct.
,
27
(
2
), pp.
145
160
.
27.
Xiao
,
Q.
,
Liao
,
W.
, and
Yang
,
S.
,
2010
, “
How Motion Trajectory Affects the Energy Extraction Performance of an Oscillating Foil
,”
AIAA
Paper No. 2010-65.
28.
Lu
,
K.
,
Yonghui
,
X.
, and
Di
,
Z.
,
2014
, “
Nonsinusoidal Motion Effects on Energy Extraction Performance of a Flapping Foil
,”
Renewable Energy
,
64
(
2
), pp.
283
293
.
29.
Lu
,
K.
,
2015
, “
Numerical and Experimental Investigation of Aerodynamic Characteristics of Oscillating Foils With Various Flapping Motions
,” Xi'an Jiaotong University, Xi'an, China.
30.
Yulu
,
W.
,
Tao
,
L.
, and
Yonghui
,
X.
,
2017
, “
Numerical Study on the Effects of the Maximum Effective Angle of Attack on Energy Extraction Performance of Foil
,”
12th International Green Energy Conference
,
Xi'an, Shaanxi, China
,
July 3–Aug. 3
.
You do not currently have access to this content.