An experimental study is presented on water single-phase flow in two 10.5 m-long annular ducts, with external pipe's internal diameter (De) of 155 mm and two concentric internal pipes of external diameters (Di) of 60 mm and 125 mm, i.e., radius ratio (α = Ri/e) of 0.39 and 0.80, respectively, with the aim of improving the understanding of flows in annular ducts. Particle image velocimetry (PIV) was applied to obtain instantaneous and averaged velocity measurements of the flow field. A charge-coupled device camera (2448 pixel × 2050 pixel, 5 Mpixel, 12-bit ) recorded pairs of images of the seeding particles and a double-pulsed PIV laser (Nd:YAG, frequency doubled to 532 nm), with a measured pulse intensity of 70 to 75 mJ/pulse, provided the illumination. Laminar flows were analyzed for validation purposes, experimental data on turbulent flows were compared with the classical law of the wall of the turbulent boundary-layer model, and the shear stresses derived from PIV data were compared with those calculated from the measured pressure drop. The effects of the Reynolds number and geometry on turbulent velocity profiles and Reynolds stresses are presented. The results suggest that the law of the wall for annular-duct flow is a function of radius ratio. The new experimental results are of great value for the development of computational fluid dynamics models and more refined pressure-drop prediction tools in annular-duct flow.

References

1.
Westerweel
,
J.
,
Draad
,
A. A.
,
van der Hoeven
,
J. G. T.
, and
van Oord
,
J.
,
1996
, “
Measurement of Fully-Developed Turbulent Pipe Flow With Digital Particle Image Velocimetry
,”
Exp. Fluids
,
20
(
3
), pp.
165
177
.
2.
den Toonder
,
J. M. J.
, and
Nieuwstadt
,
F. T. M.
,
1997
, “
Reynolds Number Effects in a Turbulent Pipe Flow for Low to Moderate Re
,”
Phys. Fluids
,
9
(
11
), pp.
3398
3409
.
3.
Meyer
,
K. E.
, and
Westerweel
,
J.
,
2000
, “
Advection Velocities of Flow Structures Estimated From Particle Image Velocimetry Measurements in a Pipe
,”
Exp. Fluids
,
29
(
Suppl. 1
), pp.
237
249
.
4.
Eggels
,
J. G. M.
,
Unger
,
F.
,
Weiss
,
M. H.
,
Westerweel
,
J.
,
Adrian
,
R. J.
,
Friedrich
,
R.
, and
Nieuwstadt
,
F. T. M.
,
1994
, “
Fully Developed Turbulent Pipe Flow: A Comparison Between Direct Numerical Simulation and Experiment
,”
J. Fluid Mech.
,
268
(
1
), pp.
175
209
.
5.
Eckels
,
S. J.
, and
Mann
,
G. W.
,
2018
, “
A Method of Measuring Turbulent Flow Structures With Particle Image Velocimetry and Incorporating Into Boundary Conditions of Large Eddy Simulations
,”
ASME J. Fluid Eng.
,
140
(
7
), p.
071401
.
6.
Saber
,
A.
,
Staffan Lundström
,
T.
, and
Hellström
,
J. G. I.
,
2016
, “
Influence of Inertial Particles on Turbulence Characteristics in Outer and Near Wall Flow as Revealed With High Resolution Particle Image Velocimetry
,”
ASME J. Fluid Eng.
,
138
(
9
), p.
091303
.
7.
Christensen
,
K. T.
,
2004
, “
The Influence of Peak-Locking Errors on Turbulence Statistics Computed From PIV Ensembles
,”
Exp. Fluids
,
36
(
3
), pp.
484
497
.
8.
Westerweel
,
J.
, and
Scarano
,
F.
,
2005
, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1096
1100
.
9.
Van Doorne
,
C. W. H.
, and
Westerweel
,
J.
,
2007
, “
Measurement of Laminar, Transitional and Turbulent Pipe Flow Using Stereoscopic-PIV
,”
Exp. Fluids
,
42
(
2
), pp.
259
279
.
10.
Carr
,
Z. R.
,
Ahmed
,
K. A.
, and
Forliti
,
D. J.
,
2009
, “
Spatially Correlated Precision Error in Digital Particle Image Velocimetry Measurements of Turbulent Flows
,”
Exp. Fluids
,
47
(
1
), pp.
95
106
.
11.
Zhu
,
Y.
,
Yuan
,
H.
,
Zhang
,
C.
, and
Lee
,
C.
,
2013
, “
Image-Preprocessing Method for Near-Wall Particle Image Velocimetry (PIV) Image Interrogation With Very Large in-Plane Displacement
,”
Meas. Sci. Technol.
,
24
(
12
), pp.
1
17
.
12.
Soares
,
R. R.
,
Barbosa
,
H. C.
,
Braga
,
R. A.
,
Botega
,
J. V. L.
, and
Horgan
,
G. W.
,
2013
, “
Biospeckle PIV (Particle Image Velocimetry) for Analyzing Fluid Flow
,”
Flow Meas. Instrum.
,
30
(
4
), pp.
90
98
.
13.
Ozalp
,
C.
,
Pinarbasi
,
A.
,
Fakilar
,
M. S.
, and
Sahin
,
B.
,
2007
, “
PIV Measurements of Flow Through a Sudden Contraction
,”
Flow Meas. Instrum.
,
18
(
3–4
), pp.
121
128
.
14.
Pruvost
,
J.
,
Legrand
,
J.
,
Legentilhomme
,
P.
, and
Doubliez
,
L.
,
2000
, “
Particle Image Velocimetry Investigation of the Flow-Field of a 3D Turbulent Annular Swirling Decaying Flow Induced by Means of a Tangential Inlet
,”
Exp. Fluids
,
29
(
3
), pp.
291
301
.
15.
Vestøl
,
S.
, and
Melaaen
,
M.
,
2007
, “
PIV and Gamma Measurements of Stratified Unprocessed Gas Flow in a Horizontal and Near Horizontal Test Pipe
,”
13th International Conference on Multiphase Production Technology
, Edinburgh, UK, June 13–15, BHR-2007-C7, pp.
237
250
.
16.
Ayati
,
A. A.
,
Kolaas
,
J.
,
Jensen
,
A.
, and
Johnson
,
G. W.
,
2014
, “
A PIV Investigation of Stratified Gas–Liquid Flow in a Horizontal Pipe
,”
Int. J. Multiphase Flow
,
61
, pp.
129
143
.
17.
Birvalski
,
M.
,
Tummers
,
M. J.
,
Delfos
,
R.
, and
Henkes
,
R. A W. M.
,
2014
, “
PIV Measurements of Waves and Turbulence in Stratified Horizontal Two-Phase Pipe Flow
,”
Int. J. Multiphase Flow
,
62
, pp.
161
173
.
18.
Ayati
,
A. A.
,
Kolaas
,
J.
,
Jensen
,
A.
, and
Johnson
,
G. W.
,
2015
, “
Combined Simultaneous Two-Phase PIV and Interface Elevation Measurements in Stratified Gas/Liquid Pipe Flow
,”
Int. J. Multiphase Flow
,
74
, pp.
45
58
.
19.
Birvalski
,
M.
,
Tummers
,
M. J.
, and
Henkes
,
R. A. W. M.
,
2016
, “
Measurements of Gravity and Gravity-Capillary Waves in Horizontal Gas-Liquid Pipe Flow Using PIV in Both Phases
,”
Int. J. Multiphase Flow
,
87
, pp.
102
113
.
20.
Elseth
,
G.
,
2001
, “
An Experimental Study of Oil/Water Flow in Horizontal Pipes
,” Ph.D. dissertation, Telemark University College, Porsgrunn, Norway.
21.
Kumara
,
W. A. S.
,
Elseth
,
G.
,
Halvorsen
,
B. M.
, and
Melaaen
,
M. C.
,
2010
, “
Comparison of Particle Image Velocimetry and Laser Doppler Anemometry Measurement Methods Applied to the Oil-Water Flow in Horizontal Pipe
,”
Flow Meas. Instrum.
,
21
(
2
), pp.
105
117
.
22.
Kumara
,
W. A. S.
,
Halvorsen
,
B. M.
, and
Melaaen
,
M. C.
,
2010
, “
Particle Image Velocimetry for Characterizing the Flow Structure of Oil–Water Flow in Horizontal and Slightly Inclined Pipes
,”
Chem. Eng. Sci.
,
65
(
15
), pp.
4332
4349
.
23.
Rothfus
,
R. R.
,
Monrad
,
C. C.
, and
Senecal
,
V. E.
,
1950
, “
Velocity Distribution and Fluid Friction in Smooth Concentric Annuli
,”
Ind. Eng. Chem.
,
42
(
12
), pp.
2511
2520
.
24.
Brighton
,
J. A.
, and
Jones
,
J. B.
,
1964
, “
Fully Developed Turbulent Flow in Annuli
,”
Trans. ASME J Basic Eng.
,
86
(
4
), pp.
835
844
.
25.
Quarmby
,
A.
,
1967
, “
An Experimental Study of Turbulent Flow in Concentric Annuli
,”
ASME Int. J. Mech. Sci.
,
19
(
4
), pp.
205
221
.
26.
Quarmby
,
A.
,
1968
, “
An Analysis of Turbulent Flow in Concentric Annuli
,”
Appl. Sci.
,
19
(1), pp.
250
273
.
27.
Lawn
,
C. J.
, and
Elliott
,
C. J.
,
1972
, “
Fully Developed Turbulent Flow Through Concentric Annuli
,”
J Mech. Eng. Sci.
,
14
(
3
), pp.
195
204
.
28.
Rehme
,
K.
,
1974
, “
Turbulent Flow in Smooth Concentric Annuli With Small Radius Ratios
,”
J. Fluid Mech.
,
72
(
1
), pp.
189
206
.
29.
Rodriguez-Corredor
,
F. E.
,
Bizhani
,
M.
,
Ashrafuzzaman
,
M.
, and
Kuru
,
E.
,
2014
, “
An Experimental Investigation of Turbulent Water Flow in Concentric Annulus Using Particle Image Velocimetry Technique
,”
ASME J. Fluid Eng.
,
136
(
5
), p.
051203
.
30.
Escudier
,
M. P.
,
Gouldson
,
I. W.
, and
Jones
,
D. M.
,
1995
, “
Flow of Shear-Thinning Fluids in a Concentric Annulus
,”
Exp. Fluids
,
18
(
4
), pp.
225
238
.
31.
Keane
,
R. D.
, and
Adrian
,
R. J.
,
1991
, “
Optimization of Particle Image Velocimeters—II: Multiple Pulsed Systems
,”
Meas. Sci. Technol.
,
2
(
10
), pp.
963
974
.
32.
Scarano
,
F.
, and
Riethmuller
,
M. L.
,
2000
, “
Advances in Iterative Multigrid PIV Image Processing
,”
Exp. Fluids
,
29
(
Suppl. 1
), pp.
51
60
.
33.
Scarano
,
F.
, and
Riethmuller
,
M. L.
,
1999
, “
Iterative Multigrid Approach in PIV Image Processing With Discrete Window Offset
,”
Exp. Fluids
,
26
(
6
), pp.
513
523
.
34.
Willert
,
C. E.
, and
Gharib
,
M.
,
1991
, “
Digital Particle Image Velocimetry
,”
Exp. Fluids
,
3
(
4
), pp.
181
193
.
35.
Munson
,
B. R.
,
Yong
,
D. F.
, and
Okiishi
,
T. H.
,
2004
,
Fundamentos Da Mecânica Dos Fluidos
, Editora Edgard blucher, Saõ Paulo, SP- Brasil.
36.
Nouri
,
J. M.
,
Umur
,
H.
, and
Whitelaw
,
J. H.
,
1993
, “
Flow of Newtonian and Non-Newtonian Fluids in Concentric and Eccentric Annuli
,”
J. Fluid Mech.
,
253
(
1
), pp.
617
641
.
37.
Chung
,
S. Y.
, and
Sung
,
H. J.
,
2003
, “
Direct Numerical Simulation of Turbulent Concentric Annular Pipe Flow—Part 2: Heat Transfer
,”
Int. J. Heat Fluid Flow
,
24
(
3
), pp.
399
411
.
38.
Chung
,
S. Y.
,
Rhee
,
G. H.
, and
Sung
,
H. J.
,
2002
, “
Direct Numerical Simulation of Turbulent Concentric Annular Pipe Flow—Part 1: Flow Field
,”
Int. J. Heat Fluid Flow
,
23
(
4
), pp.
426
440
.
39.
Ould-Rouiss
,
M.
,
Redjem-Saad
,
L.
, and
Lauriat
,
G.
,
2009
, “
Direct Numerical Simulation of Turbulent Heat Transfer in Annuli: Effect of Heat Flux Ratio
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
579
589
.
You do not currently have access to this content.