This study investigates experimentally the effects of upstream flow conditions and Reynolds number on a developing duct flow. Particle image velocimetry (PIV) and hot-wire (HW) anemometry are employed to explore the flow dynamics in a rectangular duct with an aspect ratio of 2 and a length of 40 hydraulic diameters (Dh). Experiments are employed for two Reynolds numbers, ReDh = 17,750 and 35,500 where the inlet turbulence intensity is controlled using different turbulence grids. The results show that the inlet turbulence intensity and Reynolds number have a substantial effect on the flow evolution, the onset of shear layer interaction zone, and the subsequent relaxation to the fully developed flow. The main effect is linked to the development of the boundary layer, as the turbulence intensity decays rapidly in the core flow. The detailed analysis indicates that transition to turbulence advances upstream as the inlet turbulence intensity is increased, leading to an earlier onset of shear layer interaction and the decrease in entrance length. A similar upstream advancement of laminar-to-turbulent transition is induced as the Reynolds number is increased. However, a delay in the onset of shear layer interaction regime is observed at higher Reynolds number due to lower overall boundary layer growth rate. Thus, the focus of the analysis characterization of the boundary layer development and quantification of the associated changes in the duct flow development.

References

References
1.
Patel
,
V. C.
, and
Head
,
M. R.
,
1969
, “
Some Observations on Skin Friction and Velocity Profiles in Fully Developed Pipe and Channel Flows
,”
J. Fluid Mech.
,
38
(
1
)1, pp.
181
201
.
2.
Westerweel
,
J.
,
Draad
,
A. A.
,
Van der Hoeven
,
J. T.
, and
Van Oord
,
J.
,
1996
, “
Measurement of Fully-Developed Turbulent Pipe Flow With Digital Particle Image Velocimetry
,”
Exp. Fluids
,
20
(
3
), pp.
165
177
.
3.
Hellström
,
L. H.
,
Ganapathisubramani
,
B.
, and
Smits
,
A. J.
,
2015
, “
The Evolution of Large-Scale Motions in Turbulent Pipe Fow
,”
J. Fluid Mech.
,
779
, pp.
701
715
.
4.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
(
1
), pp.
133
166
.
5.
Jiménez Sendín
,
J.
,
Hoyas
,
S.
,
Simens
,
M. P.
, and
Mizuno
,
Y.
,
2010
, “
Turbulent Boundary Layers and Channels at Moderate Reynolds Numbers
,”
J. Fluid Mech.
,
657
, pp.
335
360
.
6.
El Khoury
,
G. K.
,
Schlatter
,
P.
,
Noorani
,
A.
,
Fischer
,
P. F.
,
Brethouwer
,
G.
, and
Johansson
,
A. V.
,
2013
, “
Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers
,”
Flow, Turbul. Combust.
,
91
(
3
), pp.
475
495
.
7.
McComas
,
S. T.
,
1967
, “
Hydrodynamic Entrance Lengths for Ducts of Arbitrary Cross Section
,”
ASME J. Basic Eng.
,
89
(
4
), pp.
847
850
.
8.
Shah
,
R. K.
,
1978
, “
A Correlation for Laminar Hydrodynamic Entry Length Solutions for Circular and Noncircular Ducts
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
177
179
.
9.
Durst
,
F.
,
Ray
,
S.
,
Ünsal
,
B.
, and
Bayoumi
,
O. A.
,
2005
, “
The Development Lengths of Laminar Pipe and Channel Flows
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1154
1160
.
10.
Atkinson
,
B.
,
Brocklebank
,
M. P.
,
Card
,
C. C. H.
, and
Smith
,
J. M.
,
1969
, “
Low Reynolds Number Developing Flows
,”
AIChE J.
,
15
(
4
), pp.
548
553
.
11.
Laufer
,
J.
,
1954
, “
The Structure of Turbulence in Fully Developed Pipe Flow
,” National Advisory Committee for Aeronautics , Washington, DC, Technical Report No.
NACA-TN-2954
.http://hdl.handle.net/2060/19930083975
12.
Comolet
,
R.
, and
Bonnin
,
J.
,
1964
, “
Mécanique Expérimentale Des Fluides
,” 5th ed., Dunod, Malakoff Cedex, France.
13.
White
,
F. M.
,
2003
, “
Fluid Mechanics
,” 5th ed.,
McGraw-Hill Book Company
,
Boston, MA
.
14.
Johnston
,
J. P.
,
1975
, “
Internal Flows
,”
Turbulence
,
Springer
,
Berlin/Heidelberg
, pp.
109
169
.
15.
Sharan
,
V.
,
1972
, “
An Experimental Investigation of Naturally Developing Turbulent Flow and Flow With Fixed Transition in a Parallel Pipe
,”
American Society of Mechanical Engineers, Winter Annual Meeting
, New York.
16.
Reichert
,
J. K.
, and
Azad
,
R. S.
,
1976
, “
Nonasymptotic Behavior of Developing Turbulent Pipe Flow
,”
Can. J. Phys.
,
54
(
3
), pp.
268
278
.
17.
Shárán
,
V. K.
,
1974
, “
The Effect of Inlet Disturbances on Turbulent Boundary Layer Development in a Parallel Pipe
,”
Z. Für Angew. Math. Phys. ZAMP
,
25
(
5
), pp.
659
666
.
18.
Weir
,
J.
,
Priest
,
A. J.
, and
Sharan
,
V. K.
,
1974
, “
The Effect of Inlet Disturbances on Turbulent Pipe Flow
,”
J. Mech. Eng. Sci.
,
16
(
3
), pp.
211
213
.
19.
Darbyshire
,
A. G.
, and
Mullin
,
T.
,
1995
, “
Transition to Turbulence in Constant-Mass-Flux Pipe Flow
,”
J. Fluid Mech.
,
289
(
1
), pp.
83
114
.
20.
Mullin
,
T.
,
2011
, “
Experimental Studies of Transition to Turbulence in a Pipe
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
1
24
.
21.
Vradis
,
G. C.
,
Dougher
,
J.
, and
Kumar
,
S.
,
1993
, “
Entrance Pipe Flow and Heat Transfer for a Bingham Plastic
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
543
552
.
22.
Dean
,
R. B.
, and
Bradshaw
,
P.
,
1976
, “
Measurements of Interacting Turbulent Shear Layers in a Duct
,”
J. Fluid Mech.
,
78
(
4
), pp.
641
676
.
23.
Cockrell
,
D. J.
, and
Bradley
,
C. L.
,
1971
, “
The Response of Diffusers to Flow Conditions at Their Inlet
,”
Symposium on Internal Flows
,
University of Stanford
, Stanford, CA, pp.
32
41
.
24.
Bradshaw
,
P.
,
Dean
,
R. B.
, and
McEligot
,
D. M.
,
1973
, “
Calculation of Interacting Turbulent Shear Layers: Duct Flow
,”
ASME J. Fluids Eng.
,
95
(
2
), pp.
214
219
.
25.
Deissler
,
R. G.
,
1950
, “
Analytical and Experimental Investigation of Adiabatic Turbulent Flow in Smooth Tubes
,” National Advisory Committee for Aeronautics, Washington, DC, Technical Report No.
NACA-TN-2138
.http://hdl.handle.net/2060/19930082759
26.
Barbin
,
A. R.
, and
Jones
,
J. B.
,
1963
, “
Turbulent Flow in the Inlet Region of a Smooth Pipe
,”
ASME J. Basic Eng.
,
85
(
1
), pp.
29
33
.
27.
Reichert
,
J. K.
, and
Azad
,
R. S.
,
1979
, “
Features of a Developing Turbulent Boundary Layer Measured in a Bounded Flow
,”
Can. J. Phys.
,
57
(
3
), pp.
477
485
.
28.
Wang
,
Y. Q.
, and
Derksen
,
R. W.
,
1999
, “
Prediction of Developing Turbulent Pipe Flow by a Modified k—Model
,”
AIAA J.
,
37
(
2
), pp.
268
270
.
29.
Bryant
,
D. B.
,
Sparrow
,
E. M.
, and
Gorman
,
J. M.
,
2018
, “
Turbulent Pipe Flow in the Presence of Centerline Velocity Overshoot and Wall-Shear Undershoot
,”
Int. J. Therm. Sci.
,
125
, pp.
218
230
.
30.
Reichert
,
J. K.
,
1977
, “
A Study of Developing Turbulent Flow
,” Ph.D. thesis, The University of Manitoba, Winnipeg, MB, Canada.
31.
Salami
,
L. A.
,
1986
, “
An Investigation of Turbulent Developing Flow at the Entrance to a Smooth Pipe
,”
Int. J. Heat Fluid Flow
,
7
(
4
), pp.
247
257
.
32.
Walklate
,
P.
,
Heikal
,
M. R. F.
, and
Hatton
,
A. P.
,
1976
, “
Measurement and Prediction of Turbulence and Heat Transfer in the Entrance Region of a Pipe
,”
Proc. Inst. Mech. Eng.
,
190
(
1
), pp.
401
407
.
33.
Patel
,
R. P.
,
1974
, “
A Note on Fully Developed Turbulent Flow down a Circular Pipe
,”
Aeronaut. J.
,
78
(
758–759
), p.
9397
.
34.
Barr
,
D. I. H.
,
1980
, “
The Transition From Laminar to Turbulent Flow
,”
Proc. Inst. Civ. Eng.
,
69
(
2
), pp.
555
562
.
35.
Da Silva
,
D. F.
, and
Moss
,
E. A.
,
1994
, “
The Stability of Pipe Entrance Flows Subjected to Axisymmetric Disturbances
,”
ASME J. Fluids Eng.
,
116
(
1
), pp.
61
65
.
36.
Sharp
,
K. V.
, and
Adrian
,
R. J.
,
2004
, “
Transition From Laminar to Turbulent Flow in Liquid Filled Microtubes
,”
Exp. Fluids
,
36
(
5
), pp.
741
747
.
37.
Zanoun
,
E. S.
,
Durst
,
F.
,
Bayoumy
,
O.
, and
Al-Salaymeh
,
A.
,
2007
, “
Wall Skin Friction and Mean Velocity Profiles of Fully Developed Turbulent Pipe Flows
,”
Exp. Therm. Fluid Sci.
,
32
(
1
), pp.
249
261
.
38.
Tuna
,
B. A.
,
Li
,
X.
, and
Yarusevych
,
S.
,
2017
, “
Investigation of the Effect of Inlet Turbulence on Transitional Wall-Bounded Flows
,”
ASME
Paper No. FEDSM2017-69321
.
39.
Sale
,
D. E.
,
1967
, “
Entrance Effects in Incompressible Diffuser Flow
,” M. Sc. thesis, University of Manchester, Manchester, UK.
40.
Thomas
,
A. S.
,
1983
, “
The Control of Boundary-Layer Transition Using a Wave-Superposition Principle
,”
J. Fluid Mech.
,
137
(
1
), pp.
233
250
.
41.
Widmann
,
A.
,
Kurz
,
A.
,
Simon
,
B.
,
Grundmann
,
S.
, and
Tropea
,
C.
,
2013
, “
Characterization of the Interaction Between Tollmien-Schlichting Waves and a DBD Plasma Actuator Using Phase-Locked PIV
,” PIV13;
Tenth International Symposium on Particle Image Velocimetry
, Delft, The Netherlands, July 1–3.
42.
Amitay
,
M.
,
Tuna
,
B. A.
, and
Dell'Orso
,
H.
,
2016
, “
Identification and Mitigation of TS Waves Using Localized Dynamic Surface Modification
,”
Phys. Fluids
,
28
(
6
), p.
064103
.
43.
Brandt
,
L.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2004
, “
Transition in Boundary Layers Subject to Free-Stream Turbulence
,”
J. Fluid Mech.
,
517
, pp.
167
198
.
44.
Eckhardt
,
B.
,
Schneider
,
T. M.
,
Hof
,
B.
, and
Westerweel
,
J.
,
2007
, “
Turbulence Transition in Pipe Flow
,”
AnnuAL Rev. Fluid Mech.
,
39
(
1
), pp.
447
468
.
45.
Lee
,
Y.
, and
Goel
,
K. C.
,
1972
, “
Free Stream Turbulence and Transition in a Circular Duct
,”
Fluid Mach. Fluidics
(epub).
46.
Durst
,
F.
, and
Ünsal
,
B.
,
2006
, “
Forced Laminar-to-Turbulent Transition of Pipe Flows
,”
J. Fluid Mech.
,
560
, pp.
449
464
.
47.
Roach
,
P. E.
,
1987
, “
The Generation of nearly isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
48.
Comte-Bellot
,
G.
, and
Corrsin
,
S.
,
1966
, “
The Use of a Contraction to Improve the Isotropy of Grid-Generated Turbulence
,”
J. Fluid Mech.
,
25
(
4
), pp.
657
682
.
49.
Mohamed
,
M. S.
, and
Larue
,
J. C.
,
1990
, “
The Decay Power Law in Grid-Generated Turbulence
,”
J. Fluid Mech.
,
219
(
1
), pp.
195
214
.
50.
Krogstad
,
P. Å.
, and
Davidson
,
P. A.
,
2010
, “
Is Grid Turbulence Saffman Turbulence?
,”
J. Fluid Mech.
,
642
, pp.
373
394
.
51.
Krogstad
,
P. Å.
, and
Davidson
,
P. A.
,
2011
, “
Freely Decaying, Homogeneous Turbulence Generated by Multi-Scale Grids
,”
J. Fluid Mech.
,
680
, pp.
417
434
.
52.
Sciacchitano
,
A.
,
Neal
,
D. R.
,
Smith
,
B. L.
,
Warner
,
S. O.
,
Vlachos
,
P. P.
,
Wieneke
,
B.
, and
Scarano
,
F.
,
2015
, “
Collaborative Framework for PIV Uncertainty Quantification: Comparative Assessment of Methods
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074004
.
53.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary Layer Theory
,
Springer-Verlag
,
Berlin/Heidelberg
.
You do not currently have access to this content.