Detailed numerical data were presented for the development of a venturi-type water purifier which had a cavitation nozzle to enhance turbulent kinetic energy and vapor volume fraction. Numerical analysis for cavitation was conducted in multiphase flow using the software, cfx. The numerical method used in this study was verified by the experimental data of pressure distribution in tube and the observation of cavitation from previous studies. From the result of the numerical analysis, a logarithmic relation between the vapor volume fraction and volume flow rate of water according to the area ratio between the throat and the entrance of a venturi-tube was derived. In addition, spiral-shaped fins were developed to enhance the turbulent kinetic energy in the body of a venturi-tube. Thus, it was confirmed that the volume fraction and turbulent kinetic energy of the developed water purifier were enhanced compared with the normal venturi-tube without the spiral-shaped fin. Finally, the improved water treatment performance of the advanced design of the venturi-tube was confirmed by the removal test of the representative solutions.

References

References
1.
Khuntia
,
S.
,
Majumder
,
S. K.
, and
Ghosh
,
P.
,
2012
, “
Microbubble-Aided Water and Wastewater Purification: A Review
,”
Rev. Chem. Eng.
,
28
(
4–6
), pp.
191
221
.
2.
Takahashi
,
M.
,
Chiba
,
K.
, and
Li
,
P.
,
2007
, “
Free-Radical Generation From Collapsing Microbubbles in the Absence of a Dynamic Stimulus
,”
J. Phys. Chem. B
,
111
(
6
), pp.
1343
1347
.
3.
Terasaka
,
K.
,
Hirabayashi
,
A.
,
Nishino
,
T.
,
Fujioka
,
S.
, and
Kobayashi
,
D.
,
2011
, “
Development of Microbubble Aerator for Waste Water Treatment Using Aerobic Activated Sludge
,”
Chem. Eng. Sci.
,
66
(
14
), pp.
3172
3179
.
4.
Saharan
,
V. K.
,
Pandit
,
A. B.
,
Satish Kumar
,
P. S.
, and
Anandan
,
S.
,
2012
, “
Hydrodynamic Cavitation as an Advanced Oxidation Technique for the Degradation of Acid Red 88 Dye
,”
Ind. Eng. Chem. Res.
,
51
(
4
), pp.
1981
1989
.
5.
Ozkan
,
F.
,
Ozturk
,
M.
, and
Baylar
,
A.
,
2005
, “
Influence of Venturi Cone Angles on Jet Aeration Systems
,”
Proc. Inst. Civ. Eng.: Water Manage.
,
158
(
1
), pp.
9
16
.
6.
Wan
,
C.
,
Wang
,
B.
,
Wang
,
Q.
,
Fang
,
Y.
,
Liu
,
H.
,
Zhang
,
G.
,
Xu
,
L.
, and
Peng
,
X.
,
2017
, “
Probing and Imaging of Vapor–Water Mixture Properties Inside Partial/Cloud Cavitating Flows
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031303
.
7.
Jin
,
Z.-J.
,
Gao
,
Z.-X.
,
Qian
,
J.-Y.
,
Wu
,
Z.
, and
Sunden
,
B.
,
2017
, “
A Parametric Study of Hydrodynamic Cavitation Inside Globe Valves
,”
ASME J. Fluids Eng.
,
140
(
3
), p.
031208
.
8.
Mani
,
K. V.
,
Cervone
,
A.
, and
Hickey
,
J.-P.
,
2016
, “
Turbulence Modeling of Cavitating Flows in Liquid Rocket Turbopumps
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011301
.
9.
Park
,
J.
, and
Seong
,
W.
,
2017
, “
Experimental Study on the Effect of Number of Bubble Occurrences on Tip Vortex Cavitation Noise Scaling Law
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061303
.
10.
Dunn
,
P. F.
,
Thomas
,
F. O.
,
Davis
,
M. P.
, and
Dorofeeva
,
I. E.
,
2010
, “
Experimental Characterization of Aviation-Fuel Cavitation
,”
Phys. Fluids
,
22
(
11
), p. 117102.https://www3.nd.edu/~pdunn/www.dunnpapers/10DTDDpf.pdf
11.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Eiscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
12.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1992
, “
A New Modeling of Cavitating Flows—A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech.
,
240
(
1
), pp.
59
96
.
13.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
14.
Huang
,
B.
,
Wu
,
Q.
, and
Wang
,
G.
,
2014
, “
Numerical Investigation of Cavitating Flow in Liquid Hydrogen
,”
Int. J. Hydrogen Energy
,
39
(
4
), pp.
1698
1709
.
15.
Hu
,
H.
,
Finch
,
J. A.
,
Zhou
,
Z.
, and
Xu
,
Z.
,
1998
, “
Numerical and Experimental Study of a Hydrodynamic Cavitation Tube
,”
Metall. Mater. Trans. B
,
29
(
4
), pp.
911
917
.
16.
Uesawa
,
S. I.
,
Kaneko
,
A.
, and
Abe
,
Y.
,
2012
, “
Measurement of Void Fraction in Dispersed Bubbly Flow Containing Micro-Bubbles With the Constant Electric Current Method
,”
Flow Meas. Instrum.
,
24
, pp.
50
62
.
17.
Razzaque
,
M. M.
,
Afacan
,
A.
,
Liu
,
S.
,
Nandakumar
,
K.
,
Masliyah
,
J. H.
, and
Sanders
,
R. S.
,
2003
, “
Bubble Size in Coalescence Dominant Regime of Turbulent Air-Water Flow Through Horizontal Pipes
,”
Int. J. Multiph. Flow
,
29
(
9
), pp.
1451
1471
.
18.
Amini
,
E.
,
Bradshaw
,
D. J.
,
Finch
,
J. A.
, and
Brennan
,
M.
,
2013
, “
Influence of Turbulence Kinetic Energy on Bubble Size in Different Scale Flotation Cells
,”
Miner. Eng.
,
45
, pp.
146
150
.
19.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp. 617–624.
You do not currently have access to this content.