Stratified gas–liquid flow is a flow regime typically encountered in multiphase pipelines. The understanding and modeling of this regime is of engineering importance especially for the oil and gas industry. In this work, simulations have been conducted for stratified air–water flow in pipes. We solved the Reynolds-averaged Navier–Stokes (RANS) equations with the volume of fluid (VOF) method. The aim of this work was to evaluate the performance of the k–ω shear stress transport (SST) turbulence model with and without damping of the turbulence at the gas–liquid interface. Simulation results were compared with some of the latest experimental results found in the literature. A comparison between the simulated velocity and kinetic energy profiles and the experimental results obtained with the particle image velocimetry (PIV) technique was conducted. The characteristics of the interfacial waves were also extracted and compared with the experiments. It is shown that a proper damping of the turbulence close to the interface is needed to obtain agreement with the experimental pressure drop and liquid hold-up. In its current form, however, RANS with the k–ω turbulence model is still not able to give an accurate prediction of the velocity profiles and of the interface waves.

References

References
1.
Bowden
,
R. C.
, and
Hassan
,
I. G.
,
2011
, “
Co-Current Gas-Liquid Smooth-Stratified Flow in a Horizontal Reduced T-Junction Including Wavy and Slug Regime Transition Boundaries
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051301
.
2.
Miwa
,
S.
,
Hibiki
,
T.
, and
Mori
,
M.
,
2016
, “
Analysis of Flow-Induced Vibration Due to Stratified Wavy Two-Phase Flow
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091302
.
3.
Venturi
,
D. N.
,
Martignoni
,
W. P.
,
Noriler
,
D.
, and
Meier
,
H. F.
,
2017
, “
Numerical Investigation of Air/Water and Hydrogen/Diesel Flow Across Tube Bundles With Baffles
,”
ASME J. Fluids Eng.
,
139
(
9
), p.
091103
.
4.
Lockhart
,
R.
, and
Martinelli
,
R.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(
1
), pp.
39
48
.
5.
Chisholm
,
D.
,
1967
, “
A Theoretical Basis for the Lockhart-Martinelli Correlation for Two-Phase Flow
,”
Int. J. Heat Mass Transfer
,
10
(
12
), pp.
1767
1778
.
6.
Taitel
,
Y.
, and
Dukler
,
A.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
.
7.
Espedal
,
M.
,
1998
, “
An Experimental Investigation of Stratified Two-Phase Pipe Flow at Small Inclinations
,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.
8.
Biberg
,
D.
,
2007
, “
A Mathematical Model for Two-Phase Stratified Turbulent Duct Flow
,”
Multiph. Sci. Technol.
,
19
(
1
), pp.
1
48
.
9.
Grolman
,
E.
, and
Fortuin
,
J.
,
1997
, “
Gas-Liquid Flow in Slightly Inclined Pipes
,”
Chem. Eng. Sci.
,
52
(
24
), pp.
4461
4471
.
10.
Birvalski
,
M.
, and
Henkes
,
R.
,
2012
, “
Experiments and Modeling of Multiple Holdup States for Gas/Liquid Flow in a Pipeline
,”
Eighth North American Conference on Multiphase Technology
, Banff, AB, Canada, Paper No. BHR-2012-A020.
11.
Birvalski
,
M.
,
Koren
,
G.
, and
Henkes
,
R.
,
2014
, “
Experiments and Modeling of Liquid Accumulation in the Low Elbow of a Gas/Liquid Pipeline
,”
Ninth North American Conference on Multiphase Technology
, Banff, AB, Canada, Paper No. BHR-2014-A4.
12.
Ishii
,
M.
,
1975
,
Thermo-Fluid Dynamic Theory of Two-Phase Flow
,
Collection de la Direction des Etudes et Researches d'Electricite de France, Eyrolles
,
Paris, France
13.
Drew
,
D. A.
,
1983
, “
Mathematical Modeling of Two-Phase Flow
,”
Ann. Rev. Fluid Mech.
,
15
(
1
), pp.
261
291
.
14.
Höhne
,
T.
, and
Mehlhoop
,
J. P.
,
2014
, “
Validation of Closure Models for Interfacial Drag and Turbulence in Numerical Simulations of Horizontal Stratified Gas-Liquid Flows
,”
Int. J. Multiph. Flow
,
62
, pp.
1
16
.
15.
Holmås
,
K.
,
Nossen
,
J.
, and
Mortensen
,
D.
,
2005
, “
Simulation of Wavy Stratified Two-Phase Flow Using Computational Fluid Dynamics (CFD)
,”
12th International Conference on Multiphase Production Technology
, Barcelona, Spain, Paper No. BHR-2005-H1.
16.
Akai
,
M.
,
Inoue
,
A.
,
Aoki
,
S.
, and
Endo
,
K.
,
1980
, “
A Co-Current Stratified Air-Mercury Flow With Wavy Interface
,”
Int. J. Multiphase Flow
,
6
(
3
), pp.
173
190
.
17.
Lorencez
,
C.
,
Nasr-Esfahany
,
M.
, and
Kawaji
,
M.
,
1997
, “
Liquid Turbulence Structure at a Sheared and Wavy Gas-Liquid Interface
,”
Int. J. Multiphase Flow
,
23
(
2
), pp.
205
226
.
18.
Terzuoli
,
F.
,
Galassi
,
M.
, and
Mazzini
,
D.
,
2008
, “
CFD Code Validation against Stratified Air-Water Flow Experimental Data
,”
Sci. Technol. Nucl. Install.
,
2008
, p.
434212
.
19.
Fabre
,
J.
,
Suzanne
,
C.
, and
Masbernat
,
L.
,
1987
, “
Experimental Data Set No. 7: Stratified Flow—Part I: Local Structure
,”
Multiphase Sci. Technol.
,
3
(
1–4
), pp.
285
301
.
20.
Lo
,
S.
, and
Tomasello
,
A.
,
2010
, “
Recent Progress in CFD Modeling of Multiphase Flow in Horizontal and Near-Horizontal Pipes
,”
Seventh North American Conference on Multiphase Technology
, Banff, AB, Canada, Paper No. BHR-2010-F1.
21.
Egorov
,
Y.
,
2004
, “
Contact Condensation in Stratified Steam-Water Flow
,” EVOL-ECORA D 07
22.
Ali
,
I. T. M.
,
2017
, “
CFD Prediction of Stratified and Intermittent Gas-Liquid Two-Phase Turbulent Pipe Flow Using RANS
,”
Ph.D. thesis
, The University of Manchester, Manchester, UK.https://www.research.manchester.ac.uk/portal/files/60826840/FULL_TEXT.PDF
23.
Birvalski
,
M.
,
2015
, “
Experiments in Stratified Gas-Liquid Pipe Flow
,” Ph.D. thesis, Delft Univeristy of Technology, Delft, The Netherland.
24.
Birvalski
,
M.
,
Tummers
,
M. J.
,
Delfos
,
R.
, and
Henkes
,
R. A. W. M.
,
2014
, “
PIV Measurements of Waves and Turbulence in Stratified Horizontal Two-Phase Pipe Flow
,”
Int. J. Multiphase Flow
,
62
, pp.
161
173
.
25.
Birvalski
,
M.
,
Tummers
,
M. J.
, and
Henkes
,
R. A. W. M.
,
2016
, “
Measurements of Gravity and Gravity-Capillary Waves in Horizontal Gas-Liquid Pipe Flow Using PIV in Both Phases
,”
Int. J. Multiph. Flow
,
87
, pp.
102
113
.
26.
Ayati
,
A. A.
,
Kolaas
,
J.
,
Jensen
,
A.
, and
Johnson
,
G. W.
,
2015
, “
Combined Simultaneous Two-Phase PIV and Interface Elevation Measurements in Stratified Gas/Liquid Pipe Flow
,”
Int. J. Multiph. Flow
,
74
, pp.
45
58
.
27.
Ayati
,
A. A.
,
Kolaas
,
J.
,
Jensen
,
A.
, and
Johnson
,
G. W.
,
2016
, “
The Effect of Interfacial Waves on the Turbulence Structure of Stratified Air/Water Pipe Flow
,”
Int. J. Multiph. Flow
,
78
, pp.
104
116
.
28.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
29.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries Inc.
,
La Canada, CA
.
30.
ANSYS,
2016
, “ANSYS FLUENT 17.1 User's Guide,”
ANSYS
,
Canonsburg, PA
.
31.
Muzaferija
,
S.
,
Peric
,
M.
,
Sames
,
P.
, and
Schellin
,
T.
,
1998
, “
A Two-Fluid Navier–Stokes Solver to Simulate Water Entry
,”
22nd Symposium on Naval Hydrodynamics
, Washington, DC, Aug. 9–14, pp.
277
289
.
32.
Brackbill
,
J.
,
Kothe
,
D.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
33.
André
,
M. A.
, and
Bardet
,
P. M.
,
2017
, “
Viscous Stress Distribution Over a Wavy Gas–Liquid Interface
,”
Int. J. Multiph. Flow
,
88
, pp.
1
10
.
34.
Bestion
,
D.
,
Coste
,
P.
,
Niceno
,
C.
,
Mimouni
,
S.
,
Lakehal
,
D.
, and
Bartosiewicz
,
Y.
,
2011
, “
Two-Phase CFD: The Various Approaches and Their Applicability to Each Flow Regime
,”
Multiph. Sci. Technol.
,
23
(
2–4
), pp.
101
128
.
35.
Lakehal
,
D.
,
Fulgosi
,
M.
,
Yadigaroglu
,
G.
, and
Banerjee
,
S.
,
2003
, “
Direct Numerical Simulation of Turbulent Heat Transfer Across a Mobile, Sheared Gas-Liquid Interface
,”
ASME J. Heat Transfer
,
125
(
6
), pp.
1129
1139
.
36.
Lakehal
,
D.
, and
Liovic
,
P.
,
2011
, “
Turbulence Structure and Interaction With Steep Breaking Waves
,”
J. Fluid Mech.
,
674
, pp.
522
577
.
37.
Lombardi
,
P.
,
De Angelis
,
V.
, and
Banerjee
,
S.
,
1996
, “
Direct Numerical Simulation of Near-Interface Turbulence in Coupled Gas-Liquid Flow
,”
Phys. Fluids
,
8
(
6
), pp.
1643
1665
.
38.
Christensen
,
E. D.
,
2006
, “
Large Eddy Simulation of Spilling and Plunging Breakers
,”
Coast. Eng.
,
53
(
5–6
), pp.
463
485
.
39.
Ayati
,
A. A.
, and
Carneiro
,
J. N. E.
,
2018
, “
Statistical Characterization of Interfacial Waves in Turbulent Stratified Gas-Liquid Pipe Flows
,”
Int. J. Multiph. Flow
,
103
, pp.
94
105
.
40.
Fabre
,
J.
,
Masbernat
,
L.
, and
Suzanne
,
C.
,
1987
, “
Experimental Data Set No. 7: Stratified Flow—Part I: Local Structure
,”
Multiph. Sci. Technol.
,
3
(
1–4
), pp.
285
301
.http://www.dl.begellhouse.com/journals/5af8c23d50e0a883,6b4442405c7a2bae,23ace2da6ef09e09.html
41.
Fernandino
,
M.
, and
Ytrehus
,
T.
,
2008
, “
Effect of Interfacial Waves on Turbulence Structure in Stratified Duct Flows
,”
ASME J. Fluids Eng.
,
130
(
6
), p.
061201
.
42.
Grare
,
L.
,
Peirson
,
W. L.
,
Branger
,
H.
,
Walker
,
J. W.
,
Giovanangeli
,
J. P.
, and
Makin
,
V.
,
2013
, “
Growth and Dissipation of Wind-Forced, Deep-Water Waves
,”
J. Fluid Mech.
,
722
, pp.
5
50
.
43.
Barmak
,
I.
,
Gelfgat
,
A.
,
Vitoshkin
,
H.
,
Ullmann
,
A.
, and
Brauner
,
N.
,
2016
, “
Stability of Stratified Two-Phase Flows in Horizontal Channels
,”
Phys. Fluids
,
28
(
4
), pp.
44
101
.
44.
Yang
,
D.
, and
Shen
,
L.
,
2010
, “
Direct-Simulation-Based Study of Turbulent Flow Over Various Waving Boundaries
,”
J. Fluid Mech.
,
650
, pp.
131
180
.
45.
Buckley
,
M. P.
, and
Veron
,
F.
,
2016
, “
Structure of the Airflow above Surface Waves
,”
J. Phys. Oceanogr.
,
46
(
5
), pp.
1377
1397
.
46.
Ayati
,
A. A.
,
Vollestad
,
P.
, and
Jensen
,
A.
,
2018
, “
Detailed Measurements of Interfacial Dynamics in Air-Water Pipe Flow
,”
Procedia IUTAM
,
26
, pp.
59
69
.
47.
Vollestad
,
P.
,
Ayati
,
A. A.
,
Angheluta
,
L.
,
LaCasce
,
J. H.
, and
Jensen
,
A.
,
2018
, “
Experimental Investigation of Airflow above Waves in a Horizontal Pipe
,”
Int. J. Multiph. Flow
, (in press).
You do not currently have access to this content.