Determination of friction factor (f) in pipe flow is necessary for various applications dealing with fluid flow. The Colebrook–White equation is the most accepted technique for the f-values estimation in turbulent flow. The biggest problem with this equation is that it can only be solved using numerical iteration methods. This paper contributes two new formulas based on the Colebrook–White equation to calculate f for the turbulent flow regime. To determine the new correlations, several equations were first suggested and then their coefficients were determined using the curve fitting method. Thereafter, based on various statistical error calculations, two equations with the highest accuracies were selected for the further modification. The advantages of the proposed correlations are that they are explicit in f so they do not need any iteration to compute friction factor and the results of calculating f-values reveal that the two new equations are of maximum absolute percent errors (APE) of 0.91% and 3.49% over the entire applicability range of Colebrook–White equation.

References

References
1.
Hullender
,
D.
,
Woods
,
R.
, and
Huang
,
Y.-W.
,
2010
, “
Single Phase Compressible Steady Flow in Pipes
,”
ASME J. Fluids Eng.
,
132
(
1
), p.
014502
.
2.
Cengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2006
,
Fluid Mechanics: Fundamentals and Applications
,
McGraw-Hill Higher Education
,
New York
.
3.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass-Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
4.
Jouybari
,
N. F.
,
Maerefat
,
M.
,
Lundström
,
T. S.
,
Nimvari
,
M. E.
, and
Gholami
,
Z.
,
2018
, “
A General Macroscopic Model for Turbulent Flow in Porous Media
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011201
.
5.
Ravi
,
R. K.
, and
Saini
,
R. P.
,
2018
, “
Nusselt Number and Friction Factor Correlations for Forced Convective Type Counter Flow Solar Air Heater Having Discrete Multi V Shaped and Staggered Rib Roughness on Both Sides of the Absorber Plate
,”
Appl. Therm. Eng.
,
129
, pp.
735
746
.
6.
White
,
F. M.
,
2003
,
Fluid Mechanics
,
McGraw-Hill
,
Boston, MA
.
7.
Streeter
,
V. L.
,
Wylie
,
E. B.
, and
Bedford
,
K. W.
,
1998
,
Fluid Mechanics
,
WCB, McGraw-Hill
, Boston, MA.
8.
Holland
,
F.
, and
Bragg
,
R.
,
1995
,
Fluid Flow for Chemical Engineers
,
Arnold
,
London
.
9.
Moody
,
L. F.
,
1944
, “
Friction Factors for Pipe Flow
,”
Trans. ASME
,
66
(
8
), pp.
671
677
.https://vdocuments.mx/friction-factors-for-pipe-flow-moodylfpaper1944.html
10.
Besarati
,
S. M.
,
Myers
,
P. D.
,
Covey
,
D. C.
, and
Jamali
,
A.
,
2015
, “
Modeling Friction Factor in Pipeline Flow Using a GMDH-Type Neural Network
,”
Cogent Eng.
,
2
(
1
), p.
1056929
.
11.
Churchill
,
S. W.
,
1973
, “
Empirical Expressions for the Shear Stress in Turbulent Flow in Commercial Pipe
,”
AlChE J.
,
19
(
2
), pp.
375
376
.
12.
Jain
,
A. K.
,
1976
, “
Accurate Explicit Equation for Friction Factor
,”
J. Hydraul. Div.
,
102
(
5
), pp.
674
677
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0025295
13.
Chen
,
N. H.
,
1979
, “
An Explicit Equation for Friction Factor in Pipe
,”
Ind. Eng. Chem. Fundam.
,
18
(
3
), pp.
296
297
.
14.
Round
,
G.
,
1980
, “
An Explicit Approximation for the Friction Factor‐Reynolds Number Relation for Rough and Smooth Pipes
,”
Can. J. Chem. Eng.
,
58
(
1
), pp.
122
123
.
15.
Zigrang
,
D.
, and
Sylvester
,
N.
,
1982
, “
Explicit Approximations to the Solution of Colebrook's Friction Factor Equation
,”
AlChE J.
,
28
(
3
), pp.
514
515
.
16.
Haaland
,
S.
,
1983
, “
Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
89
90
.
17.
Silverberg
,
P. M.
, and
Manadili
,
G.
,
1997
, “
Replace Implicit Equations with Signomial Functions
,”
Chem. Eng.
,
104
(
8
), p. 129.
18.
Romeo
,
E.
,
Royo
,
C.
, and
Monzón
,
A.
,
2002
, “
Improved Explicit Equations for Estimation of the Friction Factor in Rough and Smooth Pipes
,”
Chem. Eng. J.
,
86
(
3
), pp.
369
374
.
19.
Samadianfard
,
S.
,
2012
, “
Gene Expression Programming Analysis of Implicit Colebrook–White Equation in Turbulent Flow Friction Factor Calculation
,”
J. Pet. Sci. Eng.
,
92–93
, pp.
48
55
.
20.
Shaikh
,
M. M.
, and
Wagan
,
A. I.
,
2015
, “
A New Explicit Approximation to Colebrook's Friction Factor in Rough Pipes Under Highly Turbulent Cases
,”
Int. J. Heat Mass Transfer
,
88
, pp.
538
543
.
21.
Ghanbari
,
A.
,
Farshad
,
F.
, and
Rieke
,
H.
,
2011
, “
Newly Developed Friction Factor Correlation for Pipe Flow and Flow Assurance
,”
J. Chem. Eng. Mater. Sci.
,
2
(
6
), pp.
83
86
.http://www.academicjournals.org/journal/JCEMS/article-abstract/43BC5B11677
22.
Sonnad
,
J. R.
, and
Goudar
,
C. T.
,
2006
, “
Turbulent Flow Friction Factor Calculation Using a Mathematically Exact Alternative to the Colebrook–White Equation
,”
J. Hydraul. Div.
,
132
(
8
), pp.
863
867
.
23.
Buzzelli
,
D.
,
2008
, “
Calculating Friction in One Step
,”
Mach. Des.
,
80
(
12
), pp.
54
55
.https://www.machinedesign.com/archive/calculating-friction-one-step
24.
Brkić
,
D.
,
2011
, “
An Explicit Approximation of Colebrook's Equation for Fluid Flow Friction Factor
,”
Pet. Sci. Technol.
,
29
(
15
), pp.
1596
1602
.
25.
Brkić
,
D.
,
2011
, “
New Explicit Correlations for Turbulent Flow Friction Factor
,”
Nucl. Eng. Des.
,
241
(
9
), pp.
4055
4059
.
26.
Avci
,
A.
, and
Karagoz
,
I.
,
2009
, “
A Novel Explicit Equation for Friction Factor in Smooth and Rough Pipes
,”
ASME J. Fluids Eng.
,
131
(
6
), p.
061203
.
27.
Winning
,
H. K.
, and
Coole
,
T.
,
2013
, “
Explicit Friction Factor Accuracy and Computational Efficiency for Turbulent Flow in Pipes
,”
Flow, Turbul. Combust.
,
90
(
1
), pp.
1
27
.
28.
Genić
,
S.
,
Aranđelović
,
I.
,
Kolendić
,
P.
,
Jarić
,
M.
,
Budimir
,
N.
, and
Genić
,
V.
,
2011
, “
A Review of Explicit Approximations of Colebrook's Equation
,”
FME Trans.
,
39
(
2
), pp.
67
71
.http://scindeks.ceon.rs/article.aspx?artid=1451-20921102067G&lang=en
29.
Turgut
,
O. E.
,
Asker
,
M.
, and
Coban
,
M. T.
,
2014
, “
A Review of Non Iterative Friction Factor Correlations for the Calculation of Pressure Drop in Pipes
,”
Bitlis Eren Univ. J. Sci. Technol.
,
4
(
1
).http://dergipark.gov.tr/download/article-file/40279
30.
Coban
,
M. T.
,
2012
, “
Error Analysis of Non-Iterative Friction Factor Formulas Relative to Colebrook-White Equation for the Calculation of Pressure Drop in Pipes
,”
J. Nav. Sci. Eng.
,
8
(
1
), pp.
1
13
.
31.
Baqer
,
N. M.
,
2015
, “
Survey in Colebrook Equation Approximations
,”
Global J. Math.
,
2
(
2
), pp.
160
166
.
32.
Akaike
,
H.
,
1974
, “
A New Look at the Statistical Model Identification
,”
IEEE Transactions Automatic Control
,
19
(
6
), pp.
716
723
.
33.
Symonds
,
M. R.
, and
Moussalli
,
A.
,
2011
, “
A Brief Guide to Model Selection, Multimodel Inference and Model Averaging in Behavioural Ecology Using Akaike's Information Criterion
,”
Behav. Ecol. Sociobiology
,
65
(
1
), pp.
13
21
.
34.
Brkić
,
D.
,
2011
, “
Review of Explicit Approximations to the Colebrook Relation for Flow Friction
,”
J. Pet. Sci. Eng.
,
77
(
1
), pp.
34
48
.
35.
Goudar
,
C.
, and
Sonnad
,
J.
,
2008
, “
Comparison of the Iterative Approximations of the Colebrook-White Equation: Here's a Review of Other Formulas and a Mathematically Exact Formulation That is Valid Over the Entire Range of Re Values
,”
Hydrocarbon Process
,
87
(
8
), pp. 79–83.
36.
Najafzadeh
,
M.
,
Shiri
,
J.
,
Sadeghi
,
G.
, and
Ghaemi,
,
A.
,
2018
, “
Prediction of the Friction Factor in Pipes Using Model Tree
,”
ISH J. Hydraul. Eng.
,
24
(1), pp.
9
5
.
37.
Saeed
,
K. M.
,
Mohammad Reza
,
B.
, and
Mahdi
,
M.
,
2014
, “
Comparison of Explicit Relations of Darcy Friction Measurement With Colebrook-White Equation
,”
App. Math. Eng., Manage. Technol.
,
2
(
4
), pp.
570
578
.
38.
Yıldırım
,
G.
,
2009
, “
Computer-Based Analysis of Explicit Approximations to the Implicit Colebrook–White Equation in Turbulent Flow Friction Factor Calculation
,”
Adv. Eng. Software
,
40
(
11
), pp.
1183
1190
.
39.
Barr
,
D.
,
1981
, “
Technical Note. Solutions of the Colebrook-White Function for Resistance to Uniform Turbulent Flow
,”
Proc. Inst. Civ. Eng.
,
71
(
2
), pp.
529
535
.
40.
Swanee
,
P.
, and
Jain
,
A. K.
,
1976
, “
Explicit Equations for Pipeflow Problems
,”
J. Hydraul. Div.
,
102
(
5
), pp.
657
664
.
41.
Salmasi
,
F.
,
Khatibi
,
R.
, and
Ghorbani
,
M. A.
,
2012
, “
A Study of Friction Factor Formulation in Pipes Using Artificial Intelligence Techniques and Explicit Equations
,”
Turk. J. Eng. Environ. Sci.
,
36
(
2
), pp.
121
138
.
42.
Brkić
,
D.
,
2016
, “
A Note on Explicit Approximations to Colebrook's Friction Factor in Rough Pipes Under Highly Turbulent Cases
,”
Int. J. Heat Mass Transfer
,
93
, pp.
513
515
.
43.
Ćojbašić
,
Ž.
, and
Brkić
,
D.
,
2013
, “
Very Accurate Explicit Approximations for Calculation of the Colebrook Friction Factor
,”
Int. J. Mech. Sci.
,
67
, pp.
10
13
.
44.
Taler
,
D.
,
2016
, “
Determining Velocity and Friction Factor for Turbulent Flow in Smooth Tubes
,”
Int. J. Therm. Sci.
,
105
, pp.
109
122
.
45.
Brkić
,
D.
, and
Ćojbašić
,
Ž.
,
2017
, “
Evolutionary Optimization of Colebrook's Turbulent Flow Friction Approximations
,” Fluids,
2
(
2
), pp.
15
41
.
46.
Fang
,
X.
,
Xu
,
Y.
, and
Zhou
,
Z.
,
2011
, “
New Correlations of Single-Phase Friction Factor for Turbulent Pipe Flow and Evaluation of Existing Single-Phase Friction Factor Correlations
,”
Nucl. Eng. Des.
,
241
(
3
), pp.
897
902
.
You do not currently have access to this content.