An experimental program was conducted to investigate turbulent flow of water over the stationary sand bed deposited in horizontal annuli. A large-scale horizontal flow loop equipped with the state-of-the-art particle image velocimetry (PIV) system has been used for the experiments. Experiments were conducted to measure the instantaneous local velocity profiles during turbulent flow and examine the impact of the presence of a stationary sand bed deposits on the local velocity profiles, Reynolds shear stresses and turbulence intensities. Results have shown that the existence of a stationary sand bed causes the volumetric flow to be diverted away from the lower annular gap. Increasing the sand bed height causes further reduction of the volumetric flow rate in the lower annulus. Velocity profiles near the surface of the bed deposits showed a downward shift from the universal law in wall units indicating that the flow is hydraulically rough near the sand bed. The equivalent roughness height varied with flow rates. At flow rates less than the critical flow rate, the Reynolds stress profile near the bed interface had slightly higher peak values than that of the case with no sand bed. At the critical flow rate, however, the peak Reynolds stress values for the flow over the sand bed was lower than that of the case with no bed. This behavior is attributed to the bed load transport of sand particles at the critical flow rate.

References

References
1.
Li
,
J.
, and
Luft
,
B.
,
2014
, “
Overview of Solids Transport Studies and Applications in Oil and Gas Industry—Experimental Work
,”
SPE Russian Oil and Gas Exploration & Production Technical Conference and Exhibition
, Moscow, Russia, Oct. 14–16, SPE Paper No. SPE-171285-MS.
2.
Li
,
J.
, and
Luft
,
B.
,
2014
, “
Overview Solids Transport Study and Application in Oil-Gas Industry-Theoretical Work
,”
International Petroleum Technology Conference
, Kuala Lumpur, Malaysia, Dec. 10–12, 2014, SPE Paper No. IPTC-17832-MS.
3.
Chung
,
S. Y.
,
Rhee
,
G. H.
, and
Sung
,
H. J.
,
2002
, “
Direct Numerical Simulation of Turbulent Concentric Annular Pipe flow - Part 1: Flow Field
,”
Int. J. Heat Fluid Flow
,
23
(
4
), pp.
426
440
.
4.
Escudier
,
M. P.
, and
Gouldson
,
I. W.
,
1995
, “
Concentric Annular-Flow With Centerbody Rotation of a Newtonian and a Shear-Thinning Liquid
,”
Int. J. Heat Fluid Flow
,
16
(
3
), pp.
156
162
.
5.
Japper-Jaafar
,
A.
,
Escudier
,
M. P.
, and
Poole
,
R. J.
,
2010
, “
Laminar, Transitional and Turbulent Annular Flow of Drag-Reducing Polymer Solutions
,”
J. Non-Newtonian Fluid Mech.
,
165
(
19–20
), pp.
1357
1372
.
6.
Nouri
,
J. M.
,
Umur
,
H.
, and
Whitelaw
,
J. H.
,
1993
, “
Flow of Newtonian and Non-Newtonian Fluids in Concentric and Eccentric Annuli
,”
J. Fluid Mech.
,
253
(
1
), pp.
617
641
.
7.
Rehme
,
K.
,
1974
, “
Turbulent-Flow in Smooth Concentric Annuli With Small Radius Ratios
,”
J. Fluid Mech.
,
64
(
2
), pp.
263
287
.
8.
Rodriguez-Corredor
,
F. E.
,
Bizhani
,
M.
,
Ashrafuzzaman
,
M.
, and
Kuru
,
E.
,
2014
, “
An Experimental Investigation of Turbulent Water Flow in Concentric Annulus Using Particle Image Velocimetry Technique
,”
ASME J. Fluids Eng.
,
136
(
5
), p. 051203.
9.
Rodriguez-Corredor
,
F. E.
,
Bizhani
,
M.
, and
Kuru
,
E.
,
2015
, “
Experimental Investigation of Drag Reducing Fluid Flow in Annular Geometry Using Particle Image Velocimetry Technique
,”
ASME J. Fluids Eng.
,
137
(
8
), p. 081103.
10.
Bizhani
,
M.
,
Rodriguez-Corredor
,
F. E.
, and
Kuru
,
E.
,
2015
, “
An Experimental Study of Turbulent Non-Newtonian Fluid Flow in Concentric Annuli Using Particle Image Velocimetry Technique
,”
Flow Turbul. Combust.
,
94
(
3
), pp.
527
554
.
11.
Best
,
J.
,
Bennett
,
S.
,
Bridge
,
J.
, and
Leeder
,
M.
,
1997
, “
Turbulence Modulation and Particle Velocities Over Flat Sand Beds at Low Transport Rates
,”
J. Hydraulic Eng.
,
123
(
12
), pp.
1118
1129
.
12.
Bigillon
,
F.
,
Couronne
,
G.
,
Champagne
,
J. Y.
,
Recking
,
A.
, and
Frey
,
P.
,
2006
, “
Investigation of Flow Hydrodynamics Under Equilibrium Bedload Transport Conditions Using PIV
,”
River Flow 2006
, Vols.
1 and 2
, pp.
859
865
.
13.
Carbonneau
,
P. E.
, and
Bergeron
,
N. E.
,
2000
, “
The Effect of Bedload Transport on Mean and Turbulent Flow Properties
,”
Geomorphology
,
35
(
3–4
), pp.
267
278
.
14.
Gore
,
R. A.
, and
Crowe
,
C. T.
,
1991
, “
Modulation of Turbulence by a Dispersed Phase
,”
ASME J. Fluids Eng.
,
113
(
2
), pp.
304
307
.
15.
Sumer
,
B. M.
,
Chua
,
L. H. C.
,
Cheng
,
N.-S.
, and
Fredsøe
,
J.
,
2003
, “
Influence of Turbulence on Bed Load Sediment Transport
,”
J. Hydraulic Eng.
,
129
(
8
), pp.
585
596
.
16.
Yan
,
F.
, and
Rinoshika
,
A.
,
2012
, “
Characteristics of Particle Velocity and Concentration in a Horizontal Self-Excited Gas-Solid Two-Phase Pipe Flow of Using Soft Fins
,”
Int. J. Multiphase Flow
,
41
, pp.
68
76
.
17.
Miyazaki
,
K.
,
Chen
,
G.
,
Ymamoto
,
F.
,
Ohta
,
J.
,
Murai
,
Y.
, and
Horii
,
K.
,
1999
, “
PIV Measurement of Particle Motion in Spiral Gas-Solid Two-Phase Flow
,”
Exp. Therm. Fluid Sci.
,
19
(
4
), pp.
194
203
.
18.
Yan
,
F.
, and
Rinoshika
,
A.
,
2011
, “
Application of High-Speed PIV and Image Processing to Measuring Particle Velocity and Concentration in a Horizontal Pneumatic Conveying With Dune Model
,”
Powder Technol.
,
208
(
1
), pp.
158
165
.
19.
Zeinali
,
H.
,
Toma
,
P.
, and
Kuru
,
E.
,
2012
, “
Effect of Near-Wall Turbulence on Selective Removal of Particles From Sand Beds Deposited in Pipelines
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p. 021003.
20.
Gaudio
,
R.
,
Miglio
,
A.
, and
Dey
,
S.
,
2010
, “
Non-Universality of Von Karman's Kappa in Fluvial Streams
,”
J. Hydraulic Res.
,
48
(
5
), pp.
658
663
.
21.
Ramadan
,
A.
,
Skalle
,
P.
, and
Johansen
,
S. T.
,
2003
, “
A Mechanistic Model to Determine the Critical Flow Velocity Required to Initiate the Movement of Spherical Bed Particles in Inclined Channels
,”
Chem. Eng. Sci.
,
58
(
10
), pp.
2153
2163
.
22.
Duan
,
M.
,
Miska
,
S. Z.
,
Yu
,
M.
,
Takach
,
N. E.
,
Ahmed
,
R. M.
, and
Zettner
,
C. M.
,
2008
, “
Transport of Small Cuttings in Extended-Reach Drilling
,”
SPE Drill. Completion
,
23
(
3
), pp.
258
265
.
23.
Lee
,
H.
,
Ha
,
M. Y.
, and
Balachandar
,
S.
,
2012
, “
Work-Based Criterion for Particle Motion and Implication for Turbulent Bed-Load Transport
,”
Phys. Fluids
,
24
(
11
), p.
116604
.
24.
Bizhani
,
M.
, and
Kuru
,
E.
,
2017
, “
Critical Review of Mechanistic and Empirical (Semi- Mechanistic) Models for Particle Removal From Sand Bed Deposits in Horizontal Annuli by Using Water
,”
SPE J
., Paper No. SPE-187948-PA.
25.
Bizhani
,
M.
,
Rodriguez Corredor
,
F. E.
, and
Kuru
,
E.
,
2016
, “
Quantitative Evaluation of Critical Conditions Required for Effective Hole Cleaning in Coiled-Tubing Drilling of Horizontal Wells
,”
SPE Drill. Completion
,
31
(
3
), pp.
188
199
.
26.
Ghaemi
,
S.
,
Rafati
,
S.
,
Bizhani
,
M.
, and
Kuru
,
E.
,
2015
, “
Turbulent Structure at the Midsection of an Annular Flow
,”
Phys. Fluids
,
27
(
10
), p.
105102
.
27.
Poole
,
R. J.
,
2010
, “
Development-Length Requirements for Fully Developed Laminar Flow in Concentric Annuli
,”
ASME J. Fluids Eng.
,
132
(
6
), p. 064501.
28.
Melling
,
A.
,
1997
, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1406
1416
.
29.
Nezu
,
I.
, and
Sanjou
,
M.
,
2011
, “
PIV and PTV Measurements in Hydro-Sciences With Focus on Turbulent Open-Channel Flows
,”
J. Hydro-Environ. Res.
,
5
(
4
), pp.
215
230
.
30.
LaVision, 2015, “
LaVision Davis 8.3 Manual
,” Product Manual, LaVision GmbH, Göttingen, Germany.
31.
Kundu
,
P. K.
,
Cohen
,
I. M.
, and
Dowling
,
D. R.
,
2012
,
Fluid Mechanics
,
5th ed.
,
Elsevier Science BV
,
Amsterdam, The Netherlands
.
32.
Duan
,
M. Q.
,
Miska
,
S.
,
Yu
,
M. J.
,
Takach
,
N.
,
Ahmed
,
R.
, and
Zettner
,
C.
,
2009
, “
Critical Conditions for Effective Sand-Sized-Solids Transport in Horizontal and High-Angle Wells
,”
SPE Drill. Completion
,
24
(
2
), pp.
229
238
.
33.
Lawn
,
C. J.
, and
Elliott
,
C. J.
,
1972
, “
Fully Developed Turbulent-Flow Through Concentric Annuli
,”
J. Mech. Eng. Sci.
,
14
(
3
), pp.
195
204
.
34.
Chan-Braun
,
C.
,
Garcia-Villalba
,
M.
, and
Uhlmann
,
M.
,
2011
, “
Force and Torque Acting on Particles in a Transitionally Rough Open-Channel Flow
,”
J. Fluid Mech.
,
684
, pp.
441
474
.
35.
Wiberg
,
P. L.
, and
Rubin
,
D. M.
,
1989
, “
Bed Roughness Produced by Saltating Sediment
,”
J. Geophys. Res.-Oceans
,
94
(
C4
), pp.
5011
5016
.
36.
Bizhani
,
M.
, and
Kuru
,
M.
,
2018
, “
Assessment of the Equivalent Sand Bed Roughness and the Interfacial Friction Factor in Hole Cleaning With Water in Fully Eccentric Horizontal Annulus
,”
SPE J.
(preprint).
37.
Shields
,
A.
,
1936
,
Anwendung Der Ähnlichkeitsmechanik Und Der Turbulenzforschung Auf Die Geschiebebewegung
,
Eigenverl. der Preußischen Versuchsanst. für Wasserbau und Schiff
,
Berlin
.
38.
Garcia
,
M. H.
,
2008
, “
Sedimentation Engineering: Processes, Measurements, Modeling, and Practice
,” American Society of Civil Engineers, Reston, VA.
39.
Krogstad
,
P. A.
,
Antonia
,
R. A.
, and
Browne
,
L. W. B.
,
1992
, “
Comparison Between Rough-Wall and Smooth-Wall Turbulent Boundary-Layers
,”
J. Fluid Mech.
,
245
(
1
), pp.
599
617
.
40.
Schmeeckle
,
M. W.
,
2014
, “
Numerical Simulation of Turbulence and Sediment Transport of Medium Sand
,”
J. Geophys. Res.-Earth Surf.
,
119
(
6
), pp.
1240
1262
.
41.
Kelessidis
,
V. C.
, and
Bandelis
,
G. E.
,
2004
, “
Flow Patterns and Minimum Suspension Velocity for Efficient Cuttings Transport in Horizontal and Deviated Wells in Coiled-Tubing Drilling
,”
SPE Drill. Completion
,
19
(
4
), pp. 213–227.
42.
Davies
,
J. T.
,
1987
, “
Calculation of Critical Velocities to Maintain Solids in Suspension in Horizontal Pipes
,”
Chem. Eng. Sci.
,
42
(
7
), pp.
1667
1670
.
43.
Nobach
,
H.
, and
Bodenschatz
,
E.
,
2009
, “
Limitations of Accuracy in PIV Due to Individual Variations of Particle Image Intensities
,”
Exp. Fluids
,
47
(
1
), pp.
27
38
.
44.
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2013
, “
Estimation of Uncertainty Bounds for Individual Particle Image Velocimetry Measurements From Cross-Correlation Peak Ratio
,”
Meas. Sci. Technol.
,
24
(
6
), p.
065301
.
45.
Dabiri
,
D.
, “Cross-Correlation Digital Particle Image Velocimetry—A Review,” Department of Aeronautics & Astronautics,
University of Washington
,
Seattle, WA
,
Review Paper
.https://www.aa.washington.edu/sites/aa/files/faculty/dabiri/pubs/piV.Review.Paper.final.pdf
You do not currently have access to this content.