Collaboration is described on assessment of computational fluid dynamics (CFD) predictions for surface combatant model 5415 at static drift β = 0 deg and 20 deg using recent tomographic particle image velocimetry (TPIV) experiments. Assessment includes N-version verification and validation to determine the confidence intervals for CFD solutions/codes, and vortex onset, progression, instability, and turbulent kinetic energy (TKE) budget analysis. The increase in β shows the following trends. Forces and moment increase quadratically/cubically, and become unsteady due to shear layer, Karman and flapping instabilities on the bow. Wave elevation becomes asymmetric; its amplitude increases, but the total wave elevation angle remains same. The vortex strength and TKE increase by about two orders of magnitude, and for large β, the primary vortices exhibit helical mode instability similar to those for delta wings. Forces and moment for both β and wave elevation for β = 0 deg are compared within 4% of the data, and are validated at 7% interval. Wave elevation for β = 20 deg, and vortex core location and velocities for both β are compared within 9% of the data, and are validated at 12% interval. The vortex strength and TKE predictions show large 70% errors and equally large scatter and are not validated. Thus, both errors and scatter need reduction. TKE budgets show transport of turbulence into the separation bubble similar to canonical cases, but pressure transport is dominant for ship flows. Improved CFD predictions require better grids and/or turbulence models. Investigations of solution-adaptive mesh refinement for better grid design and hybrid Reynolds-averaged Navier-Stokes/large eddy simulation models for improved turbulent flow predictions are highest priority.

References

References
1.
Gorski
,
J. J.
,
Miller
,
R. W.
, and
Coleman
,
R. M.
,
2004
, “
The Use of a RANS Code in the Design and Analysis of a Naval Combatant
,”
25th Symposium on Naval Hydrodynamics
, St. John's, NF, Canada, Aug. 8–13, pp. 144–159.
2.
Larsson
,
L.
,
Stern
,
F.
, and
Visonneau
,
M.
,
2014
,
Numerical Ship Hydrodynamics: An Assessment of the Gothenburg 2010 Workshop
,
Springer
, The Netherlands, p.
318
.
3.
Stern
,
F.
,
Agdrup
,
K.
,
Kim
,
S. Y.
,
Hochbaum
,
A. C.
,
Rhee
,
K. P.
,
Quadvlieg
,
F.
,
Perdon
,
P.
,
Hino
,
T.
,
Broglia
,
R.
, and
Gorski
,
J.
,
2011
, “
Experience From SIMMAN 2008: The First Workshop on Verification and Validation of Ship Maneuvering Simulation Methods
,”
J. Ship Res.
,
55
(
2
), pp.
135
147
.
4.
Xing
,
T.
,
Bhushan
,
S.
, and
Stern
,
F.
,
2012
, “
Unsteady Vortical Flow and Turbulent Structures for a Tanker Hull Form at Large Drift Angles
,”
Ocean Eng.
,
55
, pp.
23
43
.
5.
Visonneau
,
M.
,
Deng
,
G. B.
,
Guilmineau
,
E.
,
Queutey
,
P.
, and
Wackers
,
J.
,
2016
, “
Local and Global Assessment of the Flow Around the Japan Bulk Carrier With and Without Energy Saving Devices at Model and Full Scale
,”
31st Symposium on Naval Hydrodynamics
, Monterey, CA, Sept. 11–16.
6.
Larsson
,
L.
,
Stern
,
F.
,
Visonneau
,
M.
,
Hino
,
T.
,
Hirata
,
N.
, and
Kim
,
J.
,
2018
, “
Tokyo 2015: A Workshop on CFD in Ship Hydrodynamics
,”
Workshop Proceedings
, Tokyo, Dec. 2–4.
7.
Stern
,
F.
, and
Toxopeus
,
S. L.
,
2017
, “
Sea Facet Experimental and Computational Analysis Activities on Onset and Progression of Separation—Conclusions and Future Research
,” North Atlantic Treaty Organization Science & Technology Organization, Brussels, Belgium, Technical Report No. TR-AVT-183.
8.
Yoon
,
H.
,
Longo
,
J.
,
Toda
,
Y.
, and
Stern
,
F.
,
2015
, “
Benchmark CFD Validation Data for Surface Combatant 5415 in PMM Maneuvers—Part II: Phase-Averaged Stereoscopic PIV Flow Field Measurements
,”
Ocean Eng.
,
109
(
15
), pp.
735
750
.
9.
Stern
,
F.
,
Wilson
,
R. V.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
,
2001
, “
Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedures
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
793
802
.
10.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061403
.
11.
Eça
,
L.
, and
Hoekstra
,
M.
,
2014
, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies
,”
J. Comput. Phys.
,
262
, pp.
104
130
.
12.
Stern
,
F.
,
Diez
,
M.
,
Sadat-Hosseini
,
H.
,
Yoon
,
H.
, and
Quadvlieg
,
F.
,
2017
, “
Statistical Approach for Computational Fluid Dynamics State-of-the-Art Assessment: N-Version Verification and Validation
,”
ASME J. Verif., Validation Uncertainty Quantif.
,
2
(
3
), p.
031004
.
13.
Bhushan
,
S.
,
Yoon
,
H.
,
Stern
,
F.
,
Guilmineau
,
E.
,
Visonneau
,
M.
,
Toxopeus
,
S.
,
Simonsen
,
C.
,
Aram
,
S.
,
Kim
,
S. E.
, and
Grigoropoulos
,
G.
,
2015
, “
CFD Validation for Surface Combatant 5415 Straight Ahead and Static Drift 20 Degree Conditions
,” IIHR—Hydroscience & Engineering, Iowa City, IA, Report No.
493
.https://www.iihr.uiowa.edu/wp-content/uploads/2015/02/IIHR-Report-493-web2.pdf
14.
Longo
,
J.
,
Shao
,
J.
,
Irvine
,
M.
, and
Stern
,
F.
,
2007
, “
Phase-Averaged PIV for the Nominal Wake of a Surface Ship in Regular Head Waves
,”
ASME J. Fluids Eng.
,
129
(
5
), pp.
524
540
.
15.
Bhushan
,
S.
,
Carrica
,
P.
,
Yang
,
J.
, and
Stern
,
F.
,
2011
, “
Scalability and Validation Study for Large Scale Surface Combatant Computations Using CFDShip-Iowa
,”
Int. J. High Perform. Comput. Appl.
,
25
(
4
), pp.
466
487
.
16.
Huang
,
J.
,
Carrica
,
P. M.
, and
Stern
,
F.
,
2008
, “
Semi-Coupled Air/Water Immersed Boundary Approach for Curvilinear Dynamic Overset Grids With Application to Ship Hydrodynamics
,”
Int. J. Numer. Methods Fluids
,
58
(
6
), pp.
591
624
.
17.
Vaz
,
G.
,
Jaouen
,
F. A. P.
, and
Hoekstra
,
M.
,
2009
, “
Free-Surface Viscous Flow Computations. Validation of URANS Code FRESCO
,” 28th International Conference on Ocean, Offshore and Arctic Engineering
(OMAE)
, Honolulu, HI, May 31–June 5.
18.
Wackers
,
J.
,
Deng
,
G. B.
,
Leroyer
,
A.
,
Queutey
,
P.
, and
Visonneau
,
M.
,
2012
, “
Adaptive Grid Refinement Algorithm for Hydrodynamic Flows
,”
Comput. Fluids
,
55
, pp.
80
100
.
19.
Guilmineau
,
E.
,
Deng
,
G. B.
,
Leroyer
,
A.
,
Queutey
,
P.
,
Visonneau
,
M.
, and
Wackers
,
J.
,
2017
, “
Assessment of Hybrid RANS-LES Formulations for Flow Simulation Around the Ahmed Body
,” VII European Congress on Computational Methods in Applied Sciences and Engineering, M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris eds., Crete Island, Greece, June 5–10.
20.
Kim
,
S. E.
,
Rhee
,
B. J.
, and
Miller
,
R. W.
,
2014
, “
Anatomy of Turbulent Flow Around DARPA SUBOFF Body in a Turning Maneuver Using High-Fidelity RANS Computations
,”
Int. Shipbuild. Prog.
,
60
(
1
), pp.
207
231
.
21.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
22.
Spalart
,
P.
,
2009
, “
Detached Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
181
202
.
23.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transfer 4
, K. Hanjalic, Y. Nagano, and M. Tummers, eds., Begell House, Inc., pp.
625
632
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.2814&rep=rep1&type=pdf
24.
Longo
,
J.
, and
Stern
,
F.
,
2002
, “
Effects of Drift Angle on Model Ship Flow
,”
Exp. Fluids
,
32
(
5
), pp.
558
569
.
25.
Stern
,
F.
,
Longo
,
J.
,
Zhang
,
Z. J.
, and
Subramani
,
A. K.
,
1996
, “
Detailed Bow-Flow Data and CFD for a Series 60 CB = 0.6 Ship Model for Froude Number 0.316
,”
J. Ship Res.
,
40
(
3
), pp.
193
199
.https://trid.trb.org/view/480701
26.
Olivieri
,
A.
,
Pistani
,
F.
,
Avanzini
,
G.
,
Stern
,
F.
, and
Penna
,
R.
,
2001
, “
Tank Experiments of Resistance, Sinkage and Trim, Boundary Layer, Wake and Free Surface Flow Around a Naval Combatant INSEAN 2340 Model
,” IIHR, Report, No. 421.
27.
Surana
,
A.
,
Grunberg
,
O.
, and
Haller
,
G.
,
2006
, “
Exact Theory of Three-Dimensional Flow Separation—Part I: Steady Separation
,”
J. Fluid Mech.
,
564
, pp.
57
103
.
28.
Simpson
,
R. L.
,
1996
, “
Aspects of Turbulent Boundary Layer Separation
,”
Prog. Aerosp. Sci.
,
32
(
5
), pp.
457
521
.
29.
Delery
,
J. M.
,
Legendre
,
R.
, and
Werle
,
H.
,
2001
, “
Toward the Elucidation of Three-Dimensional Separation
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
129
154
.
30.
Wilson
,
R. V.
,
Carrica
,
P. M.
, and
Stern
,
F.
,
2006
, “
URANS Simulations for a High-Speed Transom Stern Ship With Breaking Waves
,”
Int. J. Comput. Fluid Dyn.
,
20
(
2
), pp.
105
125
.
31.
Zhang
,
Z. J.
, and
Stern
,
F.
,
1996
, “
Free-Surface Wave-Induced Separation
,”
ASME J. Fluids. Eng.
,
118
(
3
), pp.
546
554
.
32.
Egolf
,
T. A.
,
Wake
,
B.
, and
Berezin
,
C.
,
2000
, “
Recent Rotor Wake Simulation and Modeling Studies at United Technologies Corporation
,”
AIAA
Paper No. AIAA-2000-0115.
33.
Bhushan
,
S.
,
Xing
,
T.
,
Visonneau
,
M.
,
Wackers
,
J.
,
Deng
,
G.
,
Stern
,
F.
, and
Larsson
,
L.
,
2014
, “
Chapter 7: Post Workshop Computations and Analysis for KVLCC2 and 5415
,”
Numerical Ship Hydrodynamics: An Assessment of the Gothenburg 2010 Workshop
,
L.
,
Larsson
,
F.
Stern
, and
M.
Visonneau
, eds.,
Springer
, Dordrecht, The Netherlands.
34.
Bhushan
,
S.
,
Xing
,
T.
, and
Stern
,
F.
,
2012
, “
Vortical Structures and Instability Analysis for Athena Wetted Transom Flow With Full-Scale Validation
,”
ASME J. Fluids Eng.
,
134
(
3
), p.
031201
.
35.
Gallaire
,
F.
, and
Chomaz
,
J. M.
,
2003
, “
Mode Selection in Swirling Jet Experiments: A Linear Stability Analysis
,”
J. Fluid Mech.
,
494
, pp.
223
253
.
36.
Nelson
,
R. C.
, and
Pelletier
,
A.
,
2003
, “
The Unsteady Aerodynamics of Slender Wings and Aircraft Undergoing Large Amplitude Maneuvers
,”
Prog. Aerosp. Sci.
,
39
(
2–3
), pp.
185
248
.
37.
Gursul
,
I.
,
2009
, “
Unsteady Aspects of Leading-Edge Vortices
,” Report No.
NATO-RTO-TR-AVT-080
.
38.
Greenwell
,
D. I.
,
2009
, “
Engineering Models of Delta Wing Vortex Breakdown and Its Effect on Aerodynamic Characteristics
,” Report No.
NATO-RTO-TR-AVT-080
.
39.
Spall
,
R. E.
,
Gatski
,
T. B.
, and
Grosch
,
C. E.
,
1987
, “
A Criterion for Vortex Breakdown
,”
Phys. Fluids
,
30
(
11
), pp.
3434
3440
.
40.
Gursul
,
I.
,
1994
, “
Unsteady Flow Phenomena Over Delta Wings at High Angle of Attack
,”
AIAA J.
,
32
(
2
), pp.
225
231
.
41.
Xing
,
T.
,
Kandasamy
,
M.
, and
Stern
,
F.
,
2007
, “
Unsteady Free-Surface Wave-Induced Separation: Analysis of Turbulent Structures Using Detached Eddy Simulation and Single-Phase Level Set
,”
J. Turbul.
,
8
(
44
), pp.
1
35
.
42.
Panagiotou
,
P.
,
Sideridis
,
A.
,
Yakinthos
,
K.
, and
Goula
,
A.
,
2015
, “
Turbulence Kinetic Energy Balance in the Wake of a Sharp-Edged Highly Swept Delta Wing
,”
Flow, Turbul. Combust.
,
25
(
1
), pp.
121
142
.
You do not currently have access to this content.