This effort investigates advancing cavitation modeling relevant to computational fluid dynamics (CFD) through two strategies. The first aims to reformulate the cavitation models and the second explores adding liquid–vapor slippage effects. The first aspect of the paper revisits cavitation model formulations with respect to the Rayleigh–Plesset equation (RPE). The present approach reformulates the cavitation model using analytic solutions to the RPE. The benefit of this reformulation is displayed by maintaining model sensitivities similar to RPE, whereas the standard models fail these tests. In addition, the model approach is extended beyond standard homogeneous models, to a two-fluid modeling framework that explicitly models the slippage between cavitation bubbles and the liquid. The results indicate a significant impact of slip on the predicted cavitation solution, suggesting that the inclusion of such modeling can potentially improve CFD cavitation models. Overall, the results of this effort point to various aspects that may be considered in future CFD-modeling efforts with the goal of improving the model accuracy and reducing computational time.

References

References
1.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1992
, “
A New Modelling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech.
,
240
(
1
), pp.
59
96
.
2.
Merkle
,
C. L.
,
Feng
,
J.
, and
Buelow
,
P. E. O.
,
1998
, “
Computational Modeling of the Dynamics of Sheet Cavitation
,”
Third International Symposium on Cavitation
, Grenoble, France, Apr. 7–10, pp.
47
54
.
3.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
,
2000
, “
Preconditioned Navier-Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
(
8
), pp.
849
875
.
4.
Sauer
,
J.
, and
Schnerr
,
G. H.
,
2001
, “
Development of a New Cavitation Model Based on Bubble Dynamics
,”
Z. Angew. Math. Mech.
,
81
(
S3
), pp.
561
562
.
5.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
6.
Niedźwiedzka
,
A.
,
Schnerr
,
G. H.
, and
Sobieski
,
W.
,
2016
, “
Review of Numerical Models of Cavitating Flows With the Use of the Homogeneous Approach
,”
Arch. Thermodyn.
,
37
(
2
), pp.
71
88
.
7.
Rayleigh
,
L.
,
1917
, “
VIII. On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
,
34
(
200
), pp.
94
98
.
8.
Plesset
,
M. S.
,
1949
, “
The Dynamics of Cavitation Bubbles
,”
ASME J. Appl. Mech.
,
16
, pp.
277
282
.http://resolver.caltech.edu/CaltechAUTHORS:20140808-114249321
9.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
International Conference on Multiphase Flow
(
ICMF
), Yokohama, Japan, May 30–June 3, Paper No. 152.https://www.tib.eu/en/search/id/BLCP%3ACN077339909/A-Two-Phase-Flow-Model-for-Predicting-Cavitation/
10.
Ma
,
J.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2015
, “
Modelling Cavitating Flows Using an Eulerian-Lagrangian Approach and a Nucleation Model
,”
J. Phys.: Conf. Ser.
,
656
, p.
012160
.
11.
Hsiao
,
C.-T.
,
Ma
,
J.
, and
Chahine
,
G. L.
,
2014
, “
Multi-Scale Two-Phase Flow Modeling of Sheet and Cloud Cavitation
,”
30th Symposium on Naval Hydrodynamics
, Hobart, Australia, Nov. 2--7, pp. 1–18.
12.
Wang
,
Y.-C.
, and
Brennen
,
C. E.
,
1998
, “
One-Dimensional Bubbly Cavitating Flows Through a Converging-Diverging Nozzle
,”
ASME J. Fluids Eng.
,
120
(
1
), pp.
166
170
.
13.
Konstantinov
,
S. Y.
,
Tselischev
,
D. V.
, and
Tselischev
,
V. A.
,
2014
, “
Numerical Cavitation Model for Simulation of Mass Flow Stabilization Effect in ANSYS CFX
,”
Mod. Appl. Sci.
,
9
(
4
), p.
21
.
14.
Balu
,
A.
,
2016
, “
A Singularity Handling Approach to the Rayleigh Plesset Equation
,” Ph.D. thesis, The Pennsylvania State University, State College, PA.
15.
Balu
,
A.
,
Kinzel
,
M. P.
, and
Miller
,
S. T.
,
2016
, “
A Singularity Handling Approach for the Rayleigh-Plesset Equation
,”
Int. J. Numer. Methods Appl.
,
15
(
2
), p.
151
.http://www.pphmj.com/abstract/10188.htm
16.
Kinzel
,
M. P.
,
Lindau
,
J. W.
, and
Kunz
,
R.
,
2017
, “
A Unified Model for Cavitation
,”
ASME
Paper No. FEDSM2017-69363.
17.
CD-Adapco
,
2014
, “
Star-CCM+ 9.06
,” CD-Adapco, Melville, NY.
18.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
30th Aerospace Sciences Meeting and Exhibit
, Seattle, WA, Jan. 6–9, p.
439
.
19.
Kunz
,
R. F.
,
Gibeling
,
H. J.
,
Maxey
,
M. R.
,
Tryggvason
,
G.
,
Fontaine
,
A. A.
,
Petrie
,
H. L.
, and
Ceccio
,
S. L.
,
2006
, “
Validation of Two-Fluid Eulerian CFD Modeling for Microbubble Drag Reduction Across a Wide Range of Reynolds Numbers
,”
ASME J. Fluids Eng.
,
129
(
1
), pp.
66
79
.
20.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
21.
Schiller
,
L.
, and
Naumann
,
A.
,
1935
, “
A Drag Coefficient Correlation
,”
Vdi Ztg.
,
77
, pp.
318
320
.
22.
Roghair
,
I.
,
Lau
,
Y.
,
Deen
,
N.
,
Slagter
,
H.
,
Baltussen
,
M.
,
Van Sint Annaland
,
M.
, and
Kuipers
,
J.
,
2011
, “
On the Drag Force of Bubbles in Bubble Swarms at Intermediate and High Reynolds Numbers
,”
Chem. Eng. Sci.
,
66
(
14
), pp.
3204
3211
.
23.
Simonnet
,
M.
,
Gentric
,
C.
,
Olmos
,
E.
, and
Midoux
,
N.
,
2008
, “
CFD Simulation of the Flow Field in a Bubble Column Reactor: Importance of the Drag Force Formulation to Describe Regime Transitions
,”
Chem. Eng. Process.: Process Intensif.
,
47
(
9–10
), pp.
1726
1737
.
24.
Kay
,
J. M.
, and
Nedderman
,
R. M.
,
1985
,
Fluid Mechanics and Transfer Processes
,
CUP Archive
,
Cambridge, UK
.
25.
Kinzel
,
M. P.
,
Lindau
,
J. W.
, and
Kunz
,
R. F.
,
2009
, “
An Examination of Thermal Modeling Affects on the Numerical Prediction of Large-Scale Cavitating Fluid Flows
,”
Seventh International Symposium on Cavitation
(
CAV
), Ann Arbor, MI, Aug. 16–20, Paper No. 137.http://hdl.handle.net/2027.42/843111
You do not currently have access to this content.