The effect of nonsinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (Re = 11,000) is considered. An elliptic function with an adjustable parameter S (flattening parameter) is used to realize various nonsinusoidal trajectories of both motions. The two-dimensional (2D) unsteady and incompressible Navier–Stokes equation governing the flow over the flapping airfoil are resolved using the commercial software starccm+. It is shown that the nonsinusoidal flapping motion has a major effect on the propulsive performances of the flapping airfoil. Although the maximum propulsive efficiency is always achievable with sinusoidal trajectories, nonsinusoidal trajectories are found to considerably improve performance: a 110% increase of the thrust force was obtained in the best studied case. This improvement is mainly related to the modification of the heaving motion, more specifically the increase of the heaving speed at maximum pitching angle of the foil. The analysis of the flow vorticity and wake structure also enables to explain the drop of the propulsive efficiency for nonsinusoidal trajectories.

References

References
1.
Knoller
,
R.
,
1909
,
Die Gesetze Des Luftwiderstands
, Verlag Des Sterreichischer Flugtechnischen Vereines, Wien, Austria.
2.
Betz
,
A.
,
1912
, “
Zeitschrift Faur Flugtechnik Und Motorluftschiffahrt
,”
Beitrag Zur Erklarung Des Segelfluges
,
3
, pp.
269
272
.
3.
Katzmayr
,
R.
,
1922
, “
Effect of Periodic Changes of Angle of Attack on Behaviour of Airfoils
,” National Advisory Committee for Aeronautics, Washington, DC, Report No. NACA-147.
4.
Durand
,
W. F.
,
1935
,
Aerodynamic Theory: General Aerodynamic Theory: Perfect Fluids/[by] Th. von Kármán; J. M. Burgers
,
Springer
,
Berlin
.
5.
Jones
,
K. D.
,
Dohring
,
C. M.
, and
Platzer
,
M. F.
,
1998
, “
Experimental and Computational Investigation of the Knoller-Betz Effect
,”
AIAA J.
,
36
(
7
), pp.
1240
1246
.
6.
Theodorsen
,
T.
,
1949
, “
General Theory of Aerodynamic Instability and the Mechanism of Flutter
,” National Advisory Committee for Aeronautics, Langley Aeronautical Laboratory, Langley Field, VA, NASA Report No.
NACA-TR-496
.https://ntrs.nasa.gov/search.jsp?R=19930090935
7.
Garrick
,
I. E.
,
1937
, “
Propulsion of a Flapping and Oscillating Airfoil
,” National Advisory Committee for Aeronautics, Langley Aeronautical Laboratory, Langley Field, VA, NACA Report No.
NACA-TR-567
https://ntrs.nasa.gov/search.jsp?R=19930091642.
8.
Triantafyllou
,
G. S.
,
Triantafyllou
,
M. S.
, and
Grosenbaugh
,
M. A.
,
1993
, “
Optimal Thrust Development in Oscillating Foils With Application to Fish Propulsion
,”
J. Fluids Struct.
,
7
(
2
), pp.
205
224
.
9.
Anderson
,
J. M.
,
Steritlien
,
K.
,
Barrett
,
D. S.
, and
Triantafyllou
,
M. S.
,
1998
, “
Oscillating Foils of High Propulsive Efficiency
,”
J. Fluid Mech.
,
360
, pp. 41–72.
10.
Lai
,
J. C. S.
, and
Platzer
,
M. F.
,
1999
, “
Jet Characteristics of a Plunging Airfoil
,”
AIAA J.
,
37
(
12
), pp.
1529
1537
.
11.
Triantafyllou
,
M.
,
Techet
,
A. H.
, and
Hover
,
F. S.
,
2004
, “
Review of Experimental Work in Biomimetic Foils
,”
IEEE J. Oceanic Eng.
,
29
(
3
), pp.
585
594
.
12.
Babu
,
M. N. P.
,
Krishnankutty
,
P.
, and
Mallikarjuna
,
J. M.
,
2014
, “
Experimental Study of Flapping Foil Propulsion System for Ships and Underwater Vehicles and Piv Study of Caudal Fin Propulsors
,”
IEEE/OES Autonomous Underwater Vehicles
(
AUV
),
Oxford, MS
,
Oct. 6–9
, pp.
1
7
.
13.
Lee
,
T.
, and
Su
,
Y.
,
2015
, “
Surface Pressures Developed on an Airfoil Undergoing Heaving and Pitching Motion
,”
ASME J. Fluids Eng.
,
137
(
5
), p. 051105.
14.
Nguyen
,
T. A.
,
Phan
,
H. V.
,
Au
,
T. K. L.
, and
Park
,
H. C.
,
2016
, “
Experimental Study on Thrust and Power of Flapping-Wing System Based on Rack-Pinion Mechanism
,”
Bioinspiration Biomimetics
,
11
(
4
), p.
046001
.
15.
Siala
,
F.
,
Totpal
,
A.
, and
Liburdy
,
J.
,
2016
, “
Characterization of Vortex Dynamics in the Near Wake of an Oscillating Flexible Foil
,”
ASME J. Fluids Eng.
,
138
(
10
), p. 101202.
16.
Tuncer
,
I. H.
, and
Platzer
,
M. F.
,
1996
, “
Thrust Generation Due to Airfoil Flapping
,”
AIAA J.
,
34
(
2
), pp.
324
331
.
17.
Shyy
,
W.
,
Berg
,
M.
, and
Ljungqvist
,
D.
,
1999
, “
Flapping and Flexible Wings for Biological and Micro Air Vehicles
,”
Prog. Aerosp. Sci.
,
35
(
5
), pp.
455
505
.
18.
Young
,
J.
, and
Lai
,
J.
,
2004
, “
Oscillation Frequency and Amplitude Effects on the Wake of Plunging Airfoil
,”
AIAA J.
,
42
(
10
), pp.
2042
2052
.
19.
Young
,
J.
, and
Lai
,
J. C. S.
,
2007
, “
Mechanisms Influencing the Efficiency of Oscillating Airfoil Propulsion
,”
AIAA J.
,
45
(
7
), pp.
1695
1702
.
20.
Ashraf
,
M. A.
,
Young
,
J.
,
Lai
,
J. C. S.
, and
Platzer
,
M. F.
,
2011
, “
Numerical Analysis of an Oscillating-Wing Wind and Hydropower Generator
,”
AIAA J.
,
49
(
7
), pp.
1374
1386
.
21.
Benkherouf
,
T.
,
Mekadem
,
M.
,
Oualli
,
H.
,
Hanchi
,
S.
,
Keirsbulck
,
L.
, and
Labraga
,
L.
,
2011
, “
Efficiency of an Auto-Propelled Flapping Airfoil
,”
J. Fluids Struct.
,
27
(
4
), pp.
552
566
.
22.
Olivier
,
M.
, and
Dumas
,
G.
, 2016, “
Effects of Mass and Chordwise Flexibility on 2D Self-Propelled Flapping Wings
,”
J. Fluids Struct.
,
64
, pp. 46–66.
23.
Chao
,
L. M.
,
Cao
,
Y. H.
, and
Pan
,
G.
,
2017
, “
A Review of Underwater Bio-Mimetic Propulsion: Cruise and Fast-Start
,”
Fluid Dyn. Res.
,
49
(
4
), p.
044501
.
24.
Ashraf
,
M. A.
,
Young
,
J.
, and
Lai
,
J. C. S.
,
2011
, “
Reynolds Number, Thickness and Camber Effects on Flapping Airfoil Propulsion
,”
J. Fluids Struct.
,
27
(
2
), pp.
145
160
.
25.
Deng
,
S.
, and
Xiao
,
T.
,
2016
, “
Effect of Flexion on the Propulsive Performance of a Flexible Flapping Wing
,”
Proc. Inst. Mech. Eng., Part G
,
230
(
12
), pp.
2265
2273
.
26.
Koochesfahani
,
M.
,
1989
, “
Vortical Patterns in the Wake of an Oscillating Airfoil
,”
AIAA J.
,
27
(
9
), pp.
1200
1205
.
27.
Read
,
D. A.
,
Hover
,
F. S.
, and
Triantafyllou
,
M. S.
,
2003
, “
Forces on Oscillating Foils for Propulsion and Maneuvering
,”
J. Fluids Struct.
,
17
(
1
), pp.
163
183
.
28.
Hover
,
F.
,
Haugsdal
,
O.
, and
Triantafyllou
,
M.
,
2004
, “
Effect of Angle of Attack Profiles in Flapping Foil Propulsion
,”
J. Fluids Struct.
,
19
(
1
), pp.
37
47
.
29.
Sarkar
,
S.
, and
Venkatraman
,
K.
,
2005
, “
Numerical Simulation of Incompressible Viscous Flow Past a Heaving Airfoil
,”
Int. J. Numer. Methods Fluids
,
51
(
1
), pp.
1
29
.
30.
Kaya
,
M.
, and
Tuncer
,
I. H.
,
2007
, “
Path Optimization of Flapping Airfoils Based on NURBS
,”
Parallel Computational Fluid Dynamics
,
Busan, South Korea
,
May 15–18
, pp.
285
292
.
31.
Kaya
,
M.
, and
Tuncer
,
I. H.
,
2009
, “
Non-Sinusoidal Path Optimization of Dual Airfoils Flapping in a Biplane Configuration
,”
Parallel Computational Fluid Dynamics 2007
, Vol.
67
,
Springer
,
Berlin
, pp.
59
66
.
32.
Xiao
,
Q.
, and
Liao
,
W.
,
2009
, “
Numerical Study of Asymmetric Effect on a Pitching Foil
,”
Int. J. Mod. Phys. C
,
20
(
10
), pp.
1663
1680
.
33.
Xiao
,
Q.
, and
Liao
,
W.
,
2010
, “
Numerical Investigation of Angle of Attack Profile on Propulsion Performance of an Oscillating Foil
,”
Comput. Fluids
,
39
(
8
), pp.
1366
1380
.
34.
Lu
,
K.
,
Xie
,
Y. H.
, and
Zhang
,
D.
,
2013
, “
Numerical Study of Large Amplitude, Nonsinusoidal Motion and Camber Effects on Pitching Airfoil Propulsion
,”
J. Fluids Struct.
,
36
, pp. 184–194.
35.
Esfahani
,
J. A.
,
Barati
,
E.
, and
Karbasian
,
H. R.
,
2015
, “
Fluid Structures of Flapping Airfoil With Elliptical Motion Trajectory
,”
Comput. Fluids
,
108
, pp.
142
155
.
36.
Yang
,
S.
,
Liu
,
C.
, and
Wu
,
J.
,
2017
, “
Effect of Motion Trajectory on the Aerodynamic Performance of a Flapping Airfoil
,”
J. Fluids Struct.
,
75
, pp. 213–232.
37.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
, “
Optimal Tandem Configuration for Oscillating-Foils Hydrokinetic Turbine
,”
ASME J. Fluids Eng.
,
134
(
3
), p.
031103
.
38.
Siemens, 2016, “
STAR-CCM+® Documentation Version 11.06
,” Siemens PLM Software, accessed Jan. 15, 2017, http://www.cd-adapco.com/products/star-ccm
39.
Boudis
,
A.
,
Benzaoui
,
A.
,
Oualli
,
H.
,
Guerri
,
O.
,
Bayeul-Laine
,
A. C.
, and
Delgosha
,
O. C.
,
2018
, “
Energy Extraction Performance Improvement of a Flapping Foil by the Use of Combined Foil
,”
J. Appl. Fluid Mech.
,
11
(
6
), pp.
1651
1663
.http://jafmonline.net/web/guest/39?p_p_id=AcceptedPaper_WAR_AcceptedPaper&p_p_action=0&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_count=1&_AcceptedPaper_WAR_AcceptedPaper_form_page=paper_details&paperidParam=29099&typeIdParam=58&paper_status=ACCEPTED
40.
Williamson
,
C. H. K.
, and
Roshko
,
A.
,
1988
, “
Vortex Formation in the Wake of an Oscillating Cylinder
,”
J. Fluids Struct.
,
2
(4), pp. 355–381.
41.
Govardhan
,
R.
, and
Williamson
,
C. H. K.
,
2000
, “
Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder
,”
J. Fluid Mech.
,
420
, pp.
85
130
.
You do not currently have access to this content.