Despite recent extensive research into fluid–structure interaction (FSI) of cavitating hydrofoils, there remain insufficient experimental data to explain many of the observed phenomena. The cloud cavitation behavior around a hydrofoil due to the effect of FSI is investigated, utilizing rigid and compliant three-dimensional (3D) hydrofoils held in a cantilevered configuration in a cavitation tunnel. The hydrofoils have identical undeformed geometry of tapered planform with a constant modified NACA0009 profile. The rigid model is made of stainless steel and the compliant model of a carbon and glass fiber-reinforced epoxy resin with the structural fibers aligned along the spanwise direction to avoid material bend-twist coupling. Tests were conducted at an incidence of 6 deg, a mean chord-based Reynolds number of 0.7 × 106 and cavitation number of 0.8. Force measurements were simultaneously acquired with high-speed imaging to enable correlation of forces with tip bending deformations and cavity physics. Hydrofoil compliance was seen to dampen the higher frequency force fluctuations while showing strong correlation between normal force and tip deflection. The 3D nature of the flow field was seen to cause complex cavitation behavior with two shedding modes observed on both models.

References

References
1.
Young
,
Y. L.
,
2008
, “
Fluid-Structure Interaction Analysis of Flexible Composite Marine Propellers
,”
J. Fluids Struct.
,
24
(
6
), pp.
799
818
.
2.
Motley
,
M. R.
,
Liu
,
Z.
, and
Young
,
Y. L.
,
2009
, “
Utilizing Fluid-Structure Interactions to Improve Energy Efficiency of Composite Marine Propellers in Spatially Varying Wake
,”
Compos. Struct.
,
90
(
3
), pp.
304
313
.
3.
Young
,
Y. L.
,
Motley
,
M.
,
Barber
,
R.
,
Chae
,
E. J.
, and
Garg
,
N. G.
,
2016
, “
Adaptive Composite Marine Propulsors and Turbines: Progress and Challenges
,”
ASME Appl. Mech. Rev.
,
68
(
6
), p. 060803.
4.
Turnock
,
S. R.
, and
Wright
,
A. M.
,
2000
, “
Directly Coupled Fluid Structural Model of a Ship Rudder Behind a Propeller
,”
Mar. Struct.
,
13
(
1
), pp.
53
72
.
5.
Young
,
Y. L.
,
Garg
,
N.
,
Brandner
,
P. A.
,
Pearce
,
B. W.
,
Butler
,
D.
,
Clarke
,
D.
, and
Phillips
,
A. W.
,
2017
, “
Load-Dependent Bend-Twist Coupling Effects on the Steady-State Hydroelastic Response of Composite Hydrofoils
,”
Compos. Struct.
,
189
, pp.
398
418
.
6.
Young
,
Y. L.
,
2007
, “
Time-Dependent Hydroelastic Analysis of Cavitating Propulsors
,”
J. Fluids Struct.
,
23
(
2
), pp.
269
295
.
7.
Akcabay
,
D. T.
, and
Young
,
Y. L.
,
2014
, “
Influence of Cavitation on the Hydroelastic Stability of Hydrofoils
,”
J. Fluids Struct.
,
49
, pp.
170
185
.
8.
Akcabay
,
D. T.
,
Chae
,
E. J.
,
Young
,
Y. L.
,
Ducoin
,
A.
, and
Astolfi
,
J. A.
,
2014
, “
Cavity Induced Vibration of Flexible Hydrofoils
,”
J. Fluids Struct.
,
49
(
Suppl. C
), pp.
463
484
.
9.
Akcabay
,
D. T.
, and
Young
,
Y. L.
,
2015
, “
Parametric Excitations and Lock-In of Flexible Hydrofoils in Two-Phase Flows
,”
J. Fluids Struct.
,
57
, pp.
344
356
.
10.
Ausoni
,
P.
,
Farhat
,
M.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Avellan
,
F.
,
2007
, “
Cavitation Influence on Von Karman Vortex Shedding and Induced Hydrofoil Vibrations
,”
ASME J. Fluids Eng.
,
129
(
8
), pp.
966
973
.
11.
Wu
,
Q.
,
Huang
,
B.
,
Wang
,
G.
, and
Gao
,
Y.
,
2015
, “
Experimental and Numerical Investigation of Hydroelastic Response of a Flexible Hydrofoil in Cavitating Flow
,”
Int. J. Multiphase Flow
,
74
, pp.
19
33
.
12.
Ducoin
,
A.
,
Astolfi
,
J. A.
, and
Sigrist
,
J.
,
2012
, “
An Experimental Analysis of Fluid Structure Interaction on a Flexible Hydrofoil in Various Flow Regimes Including Cavitating Flow
,”
Eur. J. Mech.-B/Fluids
,
36
, pp.
63
74
.
13.
Pearce
,
B. W.
,
Brandner
,
P. A.
,
Garg
,
N.
,
Young
,
Y. L.
,
Phillips
,
A. W.
, and
Clarke
,
D. B.
,
2017
, “
The Influence of Bend-Twist Coupling on the Dynamic Response of Cavitating Composite Hydrofoils
,”
Fifth International Symposium on Marine Propulsors (SMP'17)
,
Helsinki, Finland
,
June 12–15
, pp.
803
813
.
14.
Young
,
Y.
,
Garg
,
N.
,
Brandner
,
P.
,
Pearce
,
B.
,
Butler
,
D.
,
Clarke
,
D.
, and
Phillips
,
A.
,
2018
, “
Material Bend-Twist Coupling Effects on Cavitating Response of Composite Hydrofoils
,”
Tenth International Cavitation Symposium (CAV2018)
,
Baltimore, MD
,
May 14–16
.
15.
Knapp
,
R. T.
,
1955
, “
Recent Investigations of the Mechanics of Cavitation and Cavitation Damage
,”
Trans. ASME
,
77
, pp.
1045
1054
.
16.
Brennen
,
C. E.
,
1969
, “
The Dynamic Balances of Dissolved Air and Heat in Natural Cavity Flows
,”
J. Fluid Mech.
,
37
(
1
), pp.
115
127
.
17.
Avellan
,
F.
,
Dupont
,
P.
, and
Ryhming
,
I. L.
,
1988
, “
Generation Mechanism and Dynamics of Cavitation Vortices Downstream of a Fixed Leading Edge Cavity
,”
17th Symposium on Naval Hydrodynamics
,
The Hague, The Netherlands
,
Aug. 29–Sept. 2
, pp.
1
13
.
18.
Furness
,
S.
, and
Hutton
,
S. P.
,
1975
, “
Experimental and Theoretical Studies of Two-Dimensional Fixed-Type Cavities
,”
ASME J. Fluids Eng.
, (
4
), pp.
515
521
.
19.
Le
,
Q.
,
Franc
,
J.
, and
Michel
,
J.
,
1993
, “
Partial Cavities: Global Behaviour and Mean Pressure Distribution
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
243
243
.
20.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tanimura
,
M.
, and
Tagaya
,
Y.
,
1997
, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
788
794
.
21.
Stutz
,
B.
, and
Reboud
,
J. L.
,
1997
, “
Experiments on Unsteady Cavitation
,”
Exp. Fluids
,
22
(
3
), pp.
191
198
.
22.
Callenaere
,
M.
,
Franc
,
J.
,
Michel
,
J.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.
23.
Laberteaux
,
K. R.
, and
Ceccio
,
S. L.
,
2001
, “
Partial Cavity Flows—Part 1: Cavities Forming on Models Without Spanwise Variation
,”
J. Fluid Mech.
,
431
, pp.
1
41
.
24.
Jakobsen
,
J. K.
,
1964
, “
On the Mechanism of Head Breakdown in Cavitating Inducers
,”
ASME J. Basic Eng.
,
86
(
2
), pp.
291
305
.
25.
Reisman
,
G. E.
,
Wang
,
Y. C.
, and
Brennen
,
C. E.
,
1998
, “
Observations of Shock Waves in Cloud Cavitation
,”
J. Fluid Mech.
,
355
, pp.
255
283
.
26.
Ganesh
,
H.
,
Mäkiharju
,
S. A.
, and
Ceccio
,
S. L.
,
2016
, “
Bubbly Shock Propagation as a Mechanism for Sheet-to-Cloud Transition of Partial Cavities
,”
J. Fluid Mech.
,
802
, pp.
37
78
.
27.
De Graaf
,
K.
,
Brandner
,
P.
, and
Pearce
,
B.
,
2017
, “
Spectral Content of Cloud Cavitation About a Sphere
,”
J. Fluid Mech.
,
812
, pp. 1–13.
28.
Foeth
,
E. J.
,
Van Doorne
,
C. W. H.
,
Van Terwisga
,
T.
, and
Wieneke
,
B.
,
2006
, “
Time Resolved PIV and Flow Visualization of 3D Sheet Cavitation
,”
Exp. Fluids
,
40
(
4
), pp.
503
513
.
29.
Kawanami
,
Y.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1998
, “
Three-Dimensional Characteristics of the Cavities Formed on a Two-Dimensional Hydrofoil
,”
Third International Symposium on Cavitation
, Vol.
1
,
Grenoble, France
,
Apr. 7–10
, pp.
191
196
.
30.
Zarruk
,
G. A.
,
Brandner
,
P. A.
,
Pearce
,
B. W.
, and
Phillips
,
A. W.
,
2014
, “
Experimental Study of the Steady Fluid-Structure Interaction of Flexible Hydrofoils
,”
J. Fluids Struct.
,
51
, pp.
326
343
.
31.
Brandner
,
P. A.
,
Lecoffre
,
Y.
, and
Walker
,
G. J.
,
2007
, “
Design Considerations in the Development of a Modern Cavitation Tunnel
,”
16th Australasian Fluid Mechanics Conference
,
Gold Coast, Australia
,
Dec. 3–7
, pp.
630
637
.
32.
Pelz
,
P. F.
,
Keil
,
T.
, and
Groß
,
T. F.
,
2017
, “
The Transition From Sheet to Cloud Cavitation
,”
J. Fluid Mech.
,
817
, pp.
439
454
.
You do not currently have access to this content.