Suction performance, pressure rise, and efficiency for four different inducers are examined with computational fluid dynamics (CFD) simulations and experiments performed with 18,000 rpm and 24,000 rpm. The studies originate from a research project that includes the construction of a new test bench in order to judge the design of the different inducers. This test bench allows to conduct experiments with a rotational speed of up to 40,000 rpm and high pressure ranges from 0.1 bar to 40 bar with water as working fluid. Experimental results are used to evaluate the accuracy of the simulations and to gain a better understanding of the design parameter. The influence of increasing the rotating speed from 18,000 rpm to 24,000 rpm on the performance is also shown.

References

References
1.
Lakshminarayana
,
B.
,
1995
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York
.
2.
Brennen
,
C.
,
1994
,
Hydrodynamics of Pumps
,
Oxford University Press
, Oxford, UK.
3.
Japikse
,
D.
,
Marscher
,
W.
, and
Furst
,
R.
,
1997
,
Centrifugal Pump Design and Performance
,
Concepts ETI
, White River Junction, VT.
4.
d'Adostino
,
L.
,
Torre
,
L.
,
Pasini
,
A.
, and
Cervone
,
A.
,
2008
, “
On the Preliminary Design and Noncavitation Performance Prediction of Tapered Axial Inducers
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111303
.
5.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.
6.
Jakobsen
,
K. J.
,
1971
, “
Liquid Rocket Engine Turbopump Inducers
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No.
NASA-SP-8052
.https://ntrs.nasa.gov/search.jsp?R=19710025474
7.
Ehrlich
,
D. A.
,
Schwille
,
J. A.
,
Welle
,
R. P.
,
Murdock
,
J. W.
, and
Hardy
,
B. S.
,
2009
, “
A Water Test Facility for Liquid Rocket Engine Turbopump Cavitation Testing
,”
Seventh International Symposium on Cavitation
, Ann Arbor, MI, Aug. 16–20, Paper No. CAV2009-11.http://hdl.handle.net/2027.42/84280
8.
Ehrlich
,
D. A.
, and
Murdock
,
J. W.
,
2015
, “
A Dimensionless Scaling Parameter for Thermal Effects on Cavitation in Turbopump Inducers
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041103
.
9.
Rapposelli
,
E.
,
Cervone
,
A.
, and
d'Agostino
,
L.
,
2002
, “
A New Cavitating Pump Rotordynamic Test Facility
,”
AIAA
Paper No. 2002-4285
.
10.
Hashimoto
,
T.
,
Yoshida
,
M.
,
Watanabe
,
M.
,
Kamijo
,
K.
, and
Tsujimoto
,
Y.
,
1997
, “
Experimental Study on Rotating Cavitation of Rocket Propellant Pump Inducers
,”
J. Propul. Power
,
13
(
4
), pp.
488
494
.
11.
Bakir
,
F.
,
Kouidri
,
S.
,
Noguera
,
R.
, and
Rey
,
R.
,
2003
, “
Experimental Analysis of an Axial Inducer Influence of the Shape of the Blade Leading Edge on the Performances in Cavitating Regime
,”
ASME J. Fluids Eng.
,
125
(
2
), pp.
293
301
.
12.
Japikse
,
D.
,
2002
, “
Overview of Industrial and Rocket Turbopump Inducer Design
,”
Ninth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Feb. 10–14.
13.
Gülich
,
J. F.
,
2013
,
Kreiselpumpen
,
4th ed.
,
Springer
, Berlin.
14.
ISO, 2012, “Rotodynamic Pumps—Hydraulic Performance Acceptance Tests,” International Organization for Standardization, Beuth Verlag GmbH, Berlin, ISO Standard No. 9906.
15.
JCGM
,
2008
,
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
, Joint Committee for Guides in Metrology, Sèvres, France.
You do not currently have access to this content.