Hydrodynamic cavitation represents complex physical phenomenon undesirably affecting operation as well as lifespan of many hydraulic machines from small valves to the large hydro power plants. On the other hand, the same phenomenon and its concomitants such as pressure pulsations can be exploited in many positive ways. One of them which seems to be very promising and perspective is the cavitation utilization for reduction of the microorganisms such as cyanobacteria within large bulks of water. Mutual effect of the swirl induced by the upstream mounted generator and flow constriction in converging–diverging nozzle has been experimentally investigated. The analysis of the hydraulic losses in the wide range of the cavitation regimes has been done as well as the investigation of the pipe wall acceleration induced by the fluctuations of the cavitating structures. The dynamics of the cavitation was studied using the proper orthogonal decomposition (POD) of the captured video records. The main scope of this paper is numerical investigation complementing the experimental results. The multiphase simulations were carried out using the OpenFOAM 1606+ and its interPhaseChangeFoam solver. The present study focuses on computational fluid dynamics results of the cavitating velocity field within the nozzle and analysis of the loss coefficient within the nozzle. The results of the numerical analysis were utilized for the further discussion of the experimental results.

References

References
1.
Brennen
,
C. E.
,
2014
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
,
New York
.
2.
Shen
,
Y. T.
, and
Dimotakis
,
P. E.
,
1989
, “
Viscous and Nuclei Effects on Hydrodynamic Loadings and Cavitation of a NACA 66 (MOD) Foil Section
,”
ASME J. Fluids Eng.
,
111
(
3
), pp.
306
316
.
3.
Rood
,
E. P.
,
1991
, “
Review—Mechanism of Cavitation Inception
,”
ASME J. Fluids Eng.
,
113
(
2
), pp.
163
175
.
4.
Bosioc
,
A. O.
,
Resiga
,
R.
,
Muntean
,
S.
, and
Tanasa
,
C.
,
2012
, “
Unsteady Pressure Analysis of a Swirling Flow With Vortex Rope and Axial Water Injection in a Discharge Cone
,”
ASME J. Fluids Eng.
,
134
(
8
), p. 081104.
5.
Danlos
,
A.
,
Méhal
,
J.
,
E.
,
Ravelet
,
F.
,
Coutier-Delgosha
,
O.
, and
Bakir
,
F.
,
2014
, “
Study Of the Cavitating Instability on a Grooved Venturi Profile
,”
ASME J. Fluids Eng.
,
136
(
10
), p. 101302.
6.
Do¨rfler
,
P.
,
Sick
,
M.
, and
Coutu
,
A.
,
2013
,
Flow-Induced Pulsation and Vibration in Hydroelectric Machinery: Engineer's Guidebook for Planning, Design and Troubleshooting
,
Springer
,
New York
.
7.
Štefan
,
D.
,
Zubík
,
P.
,
Hudec
,
M.
, and
Rudolf
,
P.
,
2015
, “
Numerical and Experimental Investigation Of Swirling Flow in a Conical Diffuser
,”
EPJ Web of Conferences
,
92
, p.
02085
.
8.
Jančula
,
D.
,
Mikula
,
P.
,
Maršálek
,
B.
,
Rudolf
,
P.
, and
Pochylý
,
F.
,
2014
, “
Selective Method for Cyanobacterial Bloom Removal: Hydraulic Jet Cavitation Experience
,”
Aquacult. Int.
,
22
(
2
), pp.
509
521
.
9.
Rudolf
,
P.
,
Hudec
,
M.
,
Gríger
,
M.
,
Štefan
,
D.
,
Vít
,
T.
,
Dančová
,
B.
, and
Novotný
,
N.
,
2014
, “
Characterization of the Cavitating Flow in Converging-Diverging Nozzle Based on Experimental Investigations
,”
EPJ Web Conferences
,
67
, p.
02101
.
10.
Kozák
,
J.
,
Rudolf
,
P.
,
Štefan
,
D.
,
Hudec
,
M.
, and
Gríger
,
M.
,
2015
, “
Analysis of Pressure Pulsations of Cavitating Flow in Converging-Diverging Nozzle
,”
Sixth IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
, Ljubljana, Slovenia, Sept. 9–11, pp. 10–18.
11.
Kozák
,
J.
,
Pavel
,
P.
,
Huzlík
,
R.
,
Hudec
,
M.
,
Chovanec
,
R.
,
Urban
,
O.
,
Maršálek
,
B.
, Maršá
lková E.
,
Pochylý F.
, and
Štefan D.
,
2017
, “
Transition of Cavitating Flow to Supercavitation Within Venturi Nozzle—Hysteresis Investigation
,”
EPJ Web Conferences
,
143
, p.
02055
.
12.
Dular
,
M.
,
Griessler-Bulc
,
T.
,
Gutierrez-Aguirre
,
I.
,
Heath
,
E.
,
Kosjek
,
T.
,
Krivograd Klemenčič
,
A.
,
Oder
,
M.
,
Petkovšek
,
M.
,
Racki
,
N.
,
Ravnikar
,
M.
,
Šarc
,
A.
,
Širok
,
B.
,
Zupanc
,
M.
,
Žitnik
,
M.
, and
Kompare
,
B.
,
2016
, “
Use of Hydrodynamic Cavitation in (Waste)Water Treatment
,”
Ultrason. Sonochem.
,
29
, pp.
577
588
.
13.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
14.
Danlos
,
A.
,
Ravelet
,
F.
,
Coutier-Delgosha
,
O.
, and
Bakir
,
F.
,
2014
, “
Cavitation Regime Detection Through Proper Orthogonal Decomposition: Dynamics Analysis Of the Sheet Cavity on a Grooved Convergent–Divergent Nozzle
,”
Int. J. Heat Fluid Flow
,
47
, pp.
9
20
.
15.
Tomov
,
P.
,
Danlos
,
A.
,
Khelladi
,
S.
,
Ravelet
,
F.
,
Sarraf
,
C.
, and
Bakir
,
F.
,
2015
, “
POD Study of Aerated Cavitation in a Venturi Nozzle
,”
J. Phys.: Conf. Ser.
,
656
, p.
012171
.
16.
Štefan
,
D.
,
Rudolf
,
P.
,
Muntean
,
S.
, and
Susan-Resiga
,
R.
,
2017
, “
Proper Orthogonal Decomposition Of Self-Induced Instabilities in Decelerated Swirling Flows and Their Mitigation Through Axial Water Injection
,”
ASME J. Fluids Eng.
,
139
(
8
), p.
081101
.
17.
Rudolf
,
P.
, and
Štefan
,
D.
,
2012
, “
Decomposition Of the Swirling Flow Field Downstream Of Francis Turbine Runner
,”
Iop Conf. Ser.: Earth Environ. Sci.
,
15
(
6
), p.
062008
.
18.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
19.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
,
2000
, “
A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
(
8
), pp.
849
875
.
20.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New K-Ε Eddy Viscosity Model High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
21.
Brinkhorst
,
S.
,
von Lavante
,
E.
, and
Wendt
,
G.
,
2017
, “
Experimental and Numerical Investigation of the Cavitation-Induced Choked Flow in a Herschel Venturi-Tube
,”
Flow Meas. Instrum.
,
54
, pp.
56
67
.
You do not currently have access to this content.