This investigation demonstrates that metallization can be used to tailor the electromechanical properties of polymer beads. Rigid ion exchange resin beads and softer microfluidically synthesized polyionic liquid hydrogel beads were metallized using an ion exchange process. Metallization increased bead stiffness and dielectric coefficient while reducing resistivity in all beads examined here. Gold-filled beads were preferable over platinum-filled beads as they generated greater changes in electrical properties with smaller increased stiffness. These properties could be further altered by performing multiple metallization steps, but diminishing returns were observed with each step. Ion exchange resin beads were always stable after multiple metallization steps, but polyionic beads would often rupture when repeatedly compressed. Polyionic beads with higher ionic liquid (IL) content were more fragile, and beads synthesized from monomer solutions containing 1% IL were mechanically robust after three metallization steps. These 1% IL beads delivered similar electrical properties as the IONAC beads that also underwent three metallization steps at a significantly reduced stiffness.

References

References
1.
Chu
,
S.
, and
Majumdar
,
A.
,
2012
, “
Opportunities and Challenges for a Sustainable Energy Future
,”
Nature
,
488
(
7411
), pp.
294
303
.
2.
Najafi
,
M. R.
,
Zwiers
,
F. W.
, and
Gillett
,
N. P.
,
2015
, “
Attribution of Arctic Temperature Change to Greenhouse-Gas and Aerosol Influences
,”
Nat. Clim. Change
,
5
(
3
), pp.
246
249
.
3.
Solomon
,
S.
,
Plattner
,
G.-K.
,
Knutti
,
R.
, and
Friedlingstein
,
P.
,
2009
, “
Irreversible Climate Change Due to Carbon Dioxide Emissions
,”
Proc. Natl. Acad. Sci. U. S. A
,
106
(
6
), pp.
1704
9
.
4.
Silva
,
R. A.
,
West
,
J. J.
,
Zhang
,
Y.
,
Anenberg
,
S. C.
,
Lamarque
,
J.-F.
,
Shindell
,
D. T.
,
Collins
,
W. J.
,
Dalsoren
,
S.
,
Faluvegi
,
G.
,
Folberth
,
G.
,
Horowitz
,
L. W.
,
Nagashima
,
T.
,
Naik
,
V.
,
Rumbold
,
S.
,
Skeie
,
R.
,
Sudo
,
K.
,
Takemura
,
T.
,
Bergmann
,
D.
,
Cameron-Smith
,
P.
,
Cionni
,
I.
,
Doherty
,
R. M.
,
Eyring
,
V.
,
Josse
,
B.
,
MacKenzie
,
I. A.
,
Plummer
,
D.
,
Righi
,
M.
,
Stevenson
,
D. S.
,
Strode
,
S.
,
Szopa
,
S.
, and
Zeng
,
G.
,
2013
, “
Global Premature Mortality Due to Anthropogenic Outdoor Air Pollution and the Contribution of past Climate Change
,”
Environ. Res. Lett.
,
8
(
3
), p.
34005
.
5.
Kong
,
W.
,
Cao
,
P.
,
He
,
X.
,
Yu
,
L.
,
Ma
,
X.
,
He
,
Y.
,
Lu
,
L.
,
Zhang
,
X.
, and
Deng
,
Y.
,
2014
, “
Ionic Liquid Based Vibrational Energy Harvester by Periodically Squeezing the Liquid Bridge
,”
RSC Adv.
,
4
(
37
), p.
19356
.
6.
Helseth
,
L. E.
, and
Guo
,
X. D.
,
2015
, “
Contact Electrification and Energy Harvesting Using Periodically Contacted and Squeezed Water Droplets
,”
Langmuir
,
31
(
10
), pp.
3269
3276
.
7.
Krupenkin
,
T.
, and
Taylor
,
J. A.
,
2011
, “
Reverse Electrowetting as a New Approach to High-Power Energy Harvesting
,”
Nat. Commun.
,
2
(
1
), p.
448
.
8.
Yang
,
Z.
,
Halvorsen
,
E.
, and
Dong
,
T.
,
2014
, “
Electrostatic Energy Harvester Employing Conductive Droplet and Thin-Film Electret
,”
J. Microelectromech. Syst.
,
23
(
2
), pp.
315
323
.
9.
Schertzer
,
M. J.
,
2017
, “
Analytical Model of Droplet Based Electrostatic Energy Harvester Performance
,”
Microsyst. Technol.
,
23
(
8
), pp.
3141
3148
.
10.
Yang
,
Z.
,
Halvorsen
,
E.
, and
Dong
,
T.
,
2013
, “
Capacitance Variation in Electrostatic Energy Harvester With Conductive Droplet Moving on Electret Film
,”
J. Phys. Conf. Ser.
,
476
, p.
12094
.
11.
Miljkovic
,
N.
,
Preston
,
D. J.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2014
, “
Jumping-Droplet Electrostatic Energy Harvesting
,”
Appl. Phys. Lett.
,
105
(
1
), p.
13111
.
12.
Lee
,
Y. R.
,
Shin
,
J. H.
,
Park
,
I. S.
, and
Chung
,
S. K.
,
2014
, “
A Novel Actuator for Energy Harvesting Using an Acoustically Oscillating Liquid Droplet
,”
IEEE
27th International Conference on Micro Electro Mechanical Systems
, San Francisco, CA, Jan. 26–30, pp.
897
900
.
13.
Yamada
,
S.
,
Mitsuya
,
H.
, and
Fujita
,
H.
,
2014
, “
Vibrational Energy Harvester Based on Electrical Double Layer of Ionic Liquid
,”
J. Phys. Conf. Ser.
,
557
(1), p. 012013.
14.
Matczak
,
L.
,
Johanning
,
C.
,
Gil
,
E.
,
Smith
,
T. W.
,
Schertzer
,
M. J.
, and
Iglesias Victoria
,
P.
,
2018
, “
Effect of Cation Nature on the Lubricating and Physicochemical Properties of Three Ionic Liquids
,”
Tribol. Int.
,
124
, pp.
23
33
.
15.
Reeves
,
C.
,
Garvey
,
S.
,
Menezes
,
P.
,
Dietz
,
M.
,
Jen
,
T. C.
, and
Lowell
,
M. L.
,
2012
, “
Tribological Performance of Environmentally Friendly Ionic Liquid Lubricants
,”
ASME
Paper No. IJTC2012-61180.
16.
Bermúdez, M.-A.
,
Carrión, F.-P.
,
Iglesias, P.
,
Jiménez, A.-E.
,
Martínez-Nicolás, G.
, and
Sanes, J.
, 2008, “
Ionic Liquids Interactions With Materials Surfaces Applications in Tribology and Nanotechnology
,”
MRS Proc.
,
1082
, p. 1082-Q07-02.
17.
Bermúdez
,
M. D.
,
Jiménez
,
A. E.
,
Sanes
,
J.
, and
Carrión
,
F. J.
,
2009
, “
Ionic Liquids as Advanced Lubricant Fluids
,”
Molecules
,
14
(
8
), pp.
2888
2908
.
18.
Yao
,
C.
,
Li
,
T.
,
Twu
,
P.
,
Pitner
,
W. R.
, and
Anderson
,
J. L.
,
2011
, “
Selective Extraction of Emerging Contaminants From Water Samples by Dispersive Liquid-Liquid Microextraction Using Functionalized Ionic Liquids
,”
J. Chromatogr. A
,
1218
(
12
), pp.
1556
1566
.
19.
Dharaskar, S. A.
,
Wasewar, L. K.
,
Varma, N. M.
, and
Shende, Z. D.
, 2013, “
Extractive Deep Desulfurization of Liquid Fuels Using Lewis-Based Ionic Liquids
,”
J. Energy
,
2013
, p. 4.
20.
Jacquemin
,
J.
,
Feder-Kubis
,
J.
,
Zorębski
,
M.
,
Grzybowska
,
K.
,
Chorążewski
,
M.
,
Hensel-Bielówka
,
S.
,
Zorębski
,
E.
,
Paluch
,
M.
, and
Dzida
,
M.
,
2014
, “
Structure and Thermal Properties of Salicylate-Based-Protic Ionic Liquids as New Heat Storage Media. COSMO-RS Structure Characterization and Modeling of Heat Capacities
,”
Phys. Chem. Chem. Phys.
,
16
(
8
), pp.
3549
3557
.
21.
Du
,
Z.
,
Li
,
Z.
, and
Deng
,
Y.
,
2005
, “
Synthesis and Characterization of Sulfonyl ‐ Functionalized Ionic Liquids
,”
Synth. Commun.
,
35
(
10
), pp.
1343
1349
.
22.
Jiménez
,
A. E.
,
Bermúdez
,
M. D.
, and
Iglesias
,
P.
,
2009
, “
Lubrication of Inconel 600 With Ionic Liquids at High Temperature
,”
Tribol. Int.
,
42
(
11–12
), pp.
1744
1751
.
23.
Jiménez
,
A. E.
,
Bermúdez
,
M. D.
,
Iglesias
,
P.
,
Carrión
,
F. J.
, and
Martínez-Nicolás
,
G.
,
2006
, “
1-N-Alkyl -3-Methylimidazolium Ionic Liquids as Neat Lubricants and Lubricant Additives in Steel-Aluminium Contacts
,”
Wear
,
260
(
7–8
), pp.
766
782
.
24.
Song
,
Z.
,
Liang
,
Y.
,
Fan
,
M.
,
Zhou
,
F.
, and
Liu
,
W.
,
2014
, “
Ionic Liquids From Amino Acids: Fully Green Fluid Lubricants for Various Surface Contacts
,”
RSC Adv.
,
4
(
37
), pp.
19396
19402
.
25.
Patel
,
A.
,
Guo
,
H.
, and
Iglesias
,
P.
,
2018
, “
Study of the Lubricating Ability of Protic Ionic Liquid on an Aluminum–Steel Contact
,”
Lubricants
,
6
(
3
), p.
66
.
26.
Zhao
,
J.
,
Shen
,
X.
,
Yan
,
F.
,
Qiu
,
L.
,
Lee
,
S.
, and
Sun
,
B.
,
2011
, “
Solvent-Free Ionic Liquid/Poly(Ionic Liquid) Electrolytes for Quasi-Solid-State Dye-Sensitized Solar Cells
,”
J. Mater. Chem.
,
21
(
20
), p.
7326
.
27.
Su'ait
,
M. S.
,
Rahman
,
M. Y. A.
, and
Ahmad
,
A.
,
2015
, “
Review on Polymer Electrolyte in Dye-Sensitized Solar Cells (DSSCs)
,”
Sol. Energy
,
115
, pp.
452
470
.
28.
Sahiner
,
N.
, and
Yasar
,
A. O.
,
2016
, “
Imidazolium Based Polymeric Ionic Liquid Microgels as an Alternative Catalyst to Metal Catalysts for H2 Generation From Methanolysis of NaBH4
,”
Fuel Process. Technol.
,
152
, pp.
316
324
.
29.
Chen
,
S.
,
Peng
,
Y.
,
Wu
,
Q.
,
Chang
,
A.
,
Qu
,
A.
,
Shen
,
J.
,
Xie
,
J.
,
Farooqi
,
Z. H.
, and
Wu
,
W.
,
2016
, “
Synthesis and Characterization of Responsive Poly(Anionic Liquid) Microgels
,”
Polym. Chem.
,
7
(
34
), pp.
5463
5473
.
30.
Qian
,
W.
,
Texter
,
J.
, and
Yan
,
F.
,
2017
, “
Frontiers in Poly(Ionic Liquid)s: Syntheses and Applications
,”
Chem. Soc. Rev.
,
46
(
4
), pp.
1124
1159
.
31.
Kudtarkar
,
K.
,
Johnson
,
M.
,
Iglesias Victoria
,
P.
,
Smith
,
T. W.
, and
Schertzer
,
M. J.
,
2018
, “
Effect of Chemical Composition on the Electromechanical Properties of Polymer Ionic Liquid Gel Beads
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101103
.
32.
Warshawsky
,
A.
, and
Upson
,
D. A.
,
1989
, “
Zerovalent Metal Polymer Composites—I: Metallized Beads
,”
J. Polym. Sci. Part A Polym. Chem.
,
27
(
9
), pp.
2963
2994
.
33.
Bicak
,
N.
,
Sungur
,
A.
,
Tan
,
N.
,
Bensebaa
,
F.
, and
Deslandes
,
Y.
,
2002
, “
Metalization of Polymer Beads Via Polymer-Supported Hydrazines as Reducing Agents
,”
J. Polym. Sci. Part A Polym. Chem.
,
40
(
6
), pp.
748
754
.
34.
Liguori
,
F.
,
Moreno-Marrodan
,
C.
, and
Barbaro
,
P.
,
2015
, “
Metal Nanoparticles Immobilized on Ion-Exchange Resins: A Versatile and Effective Catalyst Platform for Sustainable Chemistry
,”
Cuihua Xuebao/Chin. J. Catal.
,
36
(
8
), pp.
1157
1169
.
35.
Burkhart
,
C. T.
,
Maki
,
K. L.
, and
Schertzer
,
M. J.
,
2017
, “
Effects of Interface Velocity, Diffusion Rate, and Radial Velocity on Colloidal Deposition Patterns Left by Evaporating Droplets
,”
ASME J. Heat Transfer
,
139
(
11
), p.
111505
.
36.
Bernetski
,
K.
,
Burkhart
,
C. T.
,
Maki
,
K. L.
, and
Schertzer
,
M. J.
,
2018
, “
Characterization of Electrowetting, Contact Angle Hysteresis, and Adhesion on Digital Microfluidic Devices With Inkjet-Printed Electrodes
,”
Microfluid. Nanofluid.
,
22
(
9
), pp.
1
10
.
37.
Tiihonen
,
J.
,
Markkanen
,
I.
,
Laatikainen
,
M.
, and
Paatero
,
E.
,
2001
, “
Elasticity of Ion-Exchange Resin Beads in Solvent Mixtures
,”
J. Appl. Polym. Sci.
,
82
(
5
), pp.
1256
1264
.
38.
Yang
,
Z.
,
Halvorsen
,
E.
, and
Dong
,
T.
,
2012
, “
Power Generation From Conductive Droplet Sliding on Electret Film
,”
Appl. Phys. Lett.
,
100
(
21
), p. 213905.
39.
Rahman
,
M. T.
,
Barikbin
,
Z.
,
Badruddoza
,
A. Z. M.
,
Doyle
,
P. S.
, and
Khan
,
S. A.
,
2013
, “
Monodisperse Polymeric Ionic Liquid Microgel Beads With Multiple Chemically Switchable Functionalities
,”
Langmuir
,
29
(
30
), pp.
9535
9543
.
You do not currently have access to this content.