Aquatic invasive species (AIS) have spread throughout the United States via major rivers and tributaries. Locks and dams positioned along affected waterways, specifically lock chambers, are being evaluated as potential management sites to prevent further expansion into new areas. Recent research has shown that infusion of chemicals (e.g., carbon dioxide) into water can block or kill several invasive organisms and could be a viable option at navigational structures such as lock chambers because chemical infusion would not interfere with vessel passage or lock operation. Chemical treatments near lock structures will require large-scale fluid-mechanic systems and significant energy. Mixing must extend to all stagnation regions within a lock structure to prevent the passage of an invasive fish. This work describes the performance of both wall- and floor-based CO2-infused-water to water injection manifolds targeted for lock structures in terms of mixing time, mixing homogeneity, injection efficiency, and operational power requirements. Both systems have strengths and weaknesses so selection recommendations are given for applications such as open systems and closed systems.

References

References
1.
Schwieterman
,
J. P.
,
2010
, “
An Analysis of the Economic Effects of Terminating Operations at the Chicago River Controlling Works and O’Brien Locks on the Chicago Area Waterway System
,” DePaul University, Chicago, IL.
2.
Schwieterman
,
J. P.
,
2015
, “
Stopping the Asian Carp and Other Nuisance Species: Cost Projections for Separating the Great Lakes and Mississippi River Basins Using U.S. Army Corps of Engineers Inputs
,”
Environ. Pract.
,
17
(
4
), pp.
291
301
.
3.
Noatch
,
M. R.
, and
Suski
,
C. D.
,
2012
, “
Non-Physical Barriers to Deter Fish Movements
,”
Environ. Rev.
,
20
(
1
), pp.
71
82
.
4.
Cupp
,
A. R.
,
Tix
,
J.
,
Smerud
,
J. R.
,
Erickson
,
R. A.
,
Fredricks
,
K. T.
,
Amberg
,
J.
,
Suski
,
C. D.
, and
Wakeman
,
R.
,
2017
, “
Using Dissolved Carbon Dioxide to Alter the Behavior of Invasive round Goby
,”
Manag. Biol. Invasions
,
8
(
4
), pp.
567
574
.
5.
Cupp
,
A. R.
,
Woiak
,
Z.
,
Erickson
,
R. A.
,
Amberg
,
J. J.
, and
Gaikowski
,
M. P.
,
2017
, “
Carbon Dioxide as an Under-Ice Lethal Control for Invasive Fishes
,”
Manag. Biol. Invasions
,
19
(
9
), pp.
2543
2552
.
6.
Cupp
,
A. R.
,
Erickson
,
R. A.
,
Fredricks
,
K. T.
,
Swyers
,
N. M.
,
Hatton
,
T.
, and
Amberg
,
J.
,
2017
, “
Responses of Invasive Silver and Bighead Carp to a Carbon Dioxide Barrier in Outdoor Ponds
,”
Can. J. Fish. Aquat. Sci.
,
74
(
3
), pp.
297
305
.
7.
Donaldson
,
M. R.
,
Amberg
,
J.
,
Adhikari
,
S.
,
Cupp
,
A.
,
Jensen
,
N.
,
Romine
,
J.
,
Wright
,
A.
,
Gaikowski
,
M.
, and
Suski
,
C. D.
,
2016
, “
Carbon Dioxide as a Tool to Deter the Movement of Invasive Bigheaded Carps
,”
Trans. Am. Fish. Soc.
,
145
(
3
), pp.
657
670
.
8.
Dennis
,
C. E.
,
Wright
,
A. W.
, and
Suski
,
C. D.
,
2016
, “
Potential for Carbon Dioxide to Act as a Non-Physical Barrier for Invasive Sea Lamprey Movement
,”
J. Gt. Lakes Res.
,
42
(
1
), pp.
150
155
.
9.
Lane
,
A. G. C.
, and
Rice
,
P.
,
1982
, “
Investigation of Liquid Jet Mixing Employing an Inclined Side Entry Jet
,”
Trans. Inst. Chem. Eng.
,
60
(
3
), pp.
171
176
.
10.
Fossett
,
H.
,
1951
, “
The Action of Free Jets in Mixing of Fluids
,”
Trans Inst. Chem. Eng.
,
29
pp.
322
332
.
11.
Fossett
,
H.
, and
Prosser
,
L. E.
,
1949
, “
The Application of Free Jets to the Mixing of Fluids in Bulk
,”
Proc. Inst. Mech. Eng.
,
160
(
1
), pp.
224
232
.
12.
Fox
,
E. A.
, and
Gex
,
V. E.
,
1956
, “
Single-Phase Blending of Liquids
,”
AIChE J.
,
2
(
4
), pp.
539
544
.
13.
Chen
,
Z.
,
Jin
,
X.
,
Shimizu
,
A.
,
Hihara
,
E.
, and
Dang
,
C.
,
2017
, “
Effects of the Nozzle Configuration on Solar-Powered Variable Geometry Ejectors
,”
Sol. Energy
,
150
, pp.
275
286
.
14.
Liu
,
P.
,
Patil
,
A.
, and
Morrison
,
G.
,
2017
, “
Multiphase Flow Performance Prediction Model for Twin-Screw Pump
,”
ASME J. Fluids Eng.
,
140
(
3
), p.
031101
.
15.
Loeb
,
B. L.
,
2017
, “
Forty Years of Advances in Ozone Technology. A Review of Ozone: Science & Engineering
,”
Ozone Sci. Eng.
,
40
(
1
), pp.
3
20
.
16.
Tian
,
H.
, and
Van de Ven
,
J. D.
,
2017
, “
Modeling and Experimental Studies on the Absorption of Entrained Gas and the Influence on Fluid Compressibility
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101301
.
17.
Freudigmann
,
H. A.
,
Dörr
,
A.
,
Iben
,
U.
, and
Pelz
,
P. F.
,
2017
, “
Modeling of Cavitation-Induced Air Release Phenomena in Micro-Orifice Flows
,”
ASME J. Fluids Eng.
,
139
(
11
), p.
111301
.
18.
Bumrungthaichaichan
,
E.
,
Jaiklom
,
N.
,
Namkanisorn
,
A.
, and
Wattananusorn
,
S.
,
2016
, “
On the Computational Fluid Dynamics (CFD) Analysis of the Effect of Jet Nozzle Angle on Mixing Time for Various Liquid Heights
,”
Sci. Res. Essays
,
11
(
4
), pp.
42
56
.
19.
Dinsmore
,
C.
,
Aminfar
,
A.
, and
Princevac
,
M.
,
2017
, “
Dissipative Effects of Bubbles and Particles in Shear Flows
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061302
.
20.
Hassan
,
J. M.
,
Mohamed
,
T. A.
,
Mohammed
,
W. S.
, and
Alawee
,
W. H.
,
2014
, “
Modeling the Uniformity of Manifold With Various Configurations
,”
J. Fluids
,
2014
, p.
8
.
21.
Gandhi
,
M. S.
,
Ganguli
,
A. A.
,
Joshi
,
J. B.
, and
Vijayan
,
P. K.
,
2012
, “
CFD Simulation for Steam Distribution in Header and Tube Assemblies
,”
Chem. Eng. Res. Des.
,
90
(
4
), pp.
487
506
.
22.
Bajura
,
R. A.
, and
Jones
,
E. H.
,
1976
, “
Flow Distribution Manifolds
,”
ASME J. Fluids Eng.
,
98
(
4
), pp.
654
665
.
23.
Bajura
,
R. A.
,
1971
, “
A Model for Flow Distribution in Manifolds
,”
J. Eng. Power
,
93
(
1
), pp.
7
12
.
24.
Majumdar
,
A. K.
,
1980
, “
Mathematical Modelling of Flows in Dividing and Combining Flow Manifold
,”
Appl. Math. Model.
,
4
(
6
), pp.
424
432
.
25.
Tong
,
J. C.
,
Sparrow
,
E. M.
, and
Abraham
,
J. P.
,
2009
, “
Geometric Strategies for Attainment of Identical Outflows Through All of the Exit Ports of a Distribution Manifold in a Manifold System
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3552
3560
.
26.
Pathapati
,
S. S.
,
Mazzei
,
A. L.
,
Jackson
,
J. R.
,
Overbeck
,
P. K.
,
Bennett
,
J. P.
, and
Cobar
,
C. M.
,
2016
, “
Optimization of Mixing and Mass Transfer in in-Line Multi-Jet Ozone Contactors Using Computational Fluid Dynamics
,”
Ozone Sci. Eng.
,
38
(
4
), pp.
245
252
.
27.
Subaschandar
,
N.
, and
Sakthivel
,
G.
,
2016
, “
Performance Improvement of a Typical Manifold Using Computational Fluid Dynamics
,” 7th International Conference on Mechanical, Industrial, and Manufacturing Technologies, Cape Town, South Africa, Feb. 1–3, pp. 1–4.
28.
Cui
,
X.
,
Wu
,
K.
,
Shen
,
J.
, and
Sun
,
Y.
,
2015
, “
Numerical Analysis of Nozzles' Energy Loss Based on Fluent
,” Second
International Workshop on Material Engineering and Computer Science
, Florence, Italy, May 18.
29.
Yang
,
Y.
,
Zhang
,
J.
, and
Nie
,
S.
,
2013
, “
Energy Loss of Nozzles in Water Jet System, Jixie Gongcheng XuebaoChinese
,”
J. Mech. Eng.
,
49
(
2
), pp.
139
145
.
30.
Zhdanov
,
V.
, and
Hassel
,
E.
,
2013
, “
Mixing Enhancement in a Coaxial Jet Mixer
,”
Adv. Mater. Phys. Chem.
,
2
(
4
), p.
134
.
31.
Zaman
,
K.
,
Reeder
,
M. F.
, and
Samimy
,
M.
,
1994
, “
Control of an Axisymmetric Jet Using Vortex Generators
,”
Phys. Fluids
,
6
(
2
), pp.
778
793
.
32.
Yu
,
S. C. M.
,
Chua
,
L. P.
, and
Wang
,
X. K.
,
2004
, “
Measurements in the Near Field of a Confined Coaxial Square Jet
,”
AIAA J.
,
42
(
5
), pp.
965
972
.
33.
Quinn
,
W. R.
,
2005
, “
Near-Field Measurements in an Equilateral Triangular Turbulent Freejet
,”
AIAA J.
,
43
(
12
), pp.
2574
2585
.
34.
Nikitopoulos
,
D. E.
,
Bitting
,
J. W.
, and
Gogineni
,
S.
,
2003
, “
Comparisons of Initially Turbulent, Low-Velocity-Ratio Circular and Square Coaxial Jets
,”
AIAA J.
,
41
(
2
), pp.
230
239
.
35.
Smith
,
L. L.
,
Majamaki
,
A. J.
,
Lam
,
I. T.
,
Delabroy
,
O.
,
Karagozian
,
A. R.
,
Marble
,
F. E.
, and
Smith
,
O. I.
,
1997
, “
Mixing Enhancement in a Lobed Injector
,”
Phys. Fluids
,
9
(
3
), pp.
667
678
.
36.
Majamaki
,
A. J.
,
Smith
,
O. I.
, and
Karagozian
,
A. R.
,
2003
, “
Passive Mixing Control Via Lobed Injectors in High-Speed Flow
,”
AIAA J.
,
41
(
4
), pp.
623
632
.
37.
Bradbury
,
L. J. S.
, and
Khadem
,
A. H.
,
1975
, “
The Distortion of a Jet by Tabs
,”
J. Fluid Mech.
,
70
(
4
), pp.
801
813
.
38.
Samimy
,
M.
,
Zaman
,
K.
, and
Reeder
,
M. F.
,
1993
, “
Effect of Tabs on the Flow and Noise Field of an Axisymmetric Jet
,”
AIAA J.
,
31
(
4
), pp.
609
619
.
39.
Reeder
,
M. F.
, and
Samimy
,
M.
,
1996
, “
The Evolution of a Jet With Vortex-Generating Tabs: Real-Time Visualization and Quantitative Measurements
,”
J. Fluid Mech.
,
311
(
1
), pp.
73
118
.
40.
Foss
,
J. K.
, and
Zaman
,
K.
,
1999
, “
Large-and Small-Scale Vortical Motions in a Shear Layer Perturbed by Tabs
,”
J. Fluid Mech.
,
382
, pp.
307
329
.
41.
Coldrey
,
P. W.
,
1978
, “
Jet Mixing
,”
Pap. IChemE Course
, University of Bradford, UK.
42.
Maruyama
,
T.
,
1986
,
Jet Mixing of Fluids in Vessels, Encyclopedia of Fluid Mechanics
,
Gulf Publishing Company
,
Houston, TX
.
43.
Grenville
,
R. K.
, and
Tilton
,
J. N.
,
2011
, “
Jet Mixing in Tall Tanks: Comparison of Methods for Predicting Blend Times
,”
Chem. Eng. Res. Des
,
89
(
12
), pp.
2501
2506
.
44.
Patwardhan
,
A. W.
, and
Gaikwad
,
S. G.
,
2003
, “
Mixing in Tanks Agitated by Jets
,”
Chem. Eng. Res. Des
,
81
(
2
), pp.
211
220
.
45.
Buley
,
R.
,
Hasler
,
C.
,
Tix
,
J.
,
Suski
,
C.
, and
Hubert
,
T.
,
2017
, “
Can Ozone Be Used to Control the Spread of Freshwater Aquatic Invasive Species?
,”
Manage. Biol. Invasions
,
8
(
1
), pp.
13
24
.
46.
Rice
,
E. W.
,
Baird
,
R. B.
,
Eaton
,
A. D.
, and
Clesceri
,
L. S.
,
2005
, “
Standard Methods for the Examination of Water and Wastewater
,”
American Public Health Association
, Washington, DC.
47.
Gebhart
,
B.
,
1993
,
Heat Conduction and Mass Diffusion
,
McGraw-Hill
, New York.
48.
Rolle
,
K. C.
,
2016
,
Heat and Mass Transfer
,
Cengage Learning
, Cengage Learning, Boston, MA.
49.
Shane
,
T. J.
,
1996
, “
Pressurized Solution Feed System for PH Control
,” U.S. Patent No. 5,514,264.
50.
Romine
,
J. G.
,
Jensen
,
N. R.
,
Parsley
,
M. J.
,
Gaugush
,
R. F.
,
Severson
,
T. J.
,
Hatton
,
T. W.
,
Adams
,
R. F.
, and
Gaikowski
,
M. P.
,
2015
, “
Response of Bigheaded Carp and Silver Carp to Repeated Water Gun Operation in an Enclosed Shallow Pond
,”
N. Am. J. Fish. Manage.
,
35
(
3
), pp.
440
453
.
51.
Ruebush
,
B. C.
,
Sass
,
G. G.
,
Chick
,
J. J.
, and
Stafford
,
J. D.
,
2012
, “
In-Situ Tests of Sound-Bubble-Strobe Light Barrier Technologies to Prevent Expansions of Asian Carp
,”
Aquat. Invasions
,
7
(
1
), pp.
37
48
.
52.
Taylor
,
R. M.
,
Pegg
,
M. A.
, and
Chick
,
J. H.
,
2005
, “
Response of Bighead Carp to a Bioacoustics Behavioral Fish Guidance System
,”
Fish. Manage. Ecol.
,
12
(
4
), pp.
283
286
.
53.
Parker
,
A. D.
,
Glover
,
D. C.
,
Finney
,
S. T.
,
Rogers
,
P. B.
,
Stewart
,
J. G.
, and
Simmonds
,
R. L.
,
2015
, “
Direct Observations of Fish Incapacitation Rates at a Large Electrical Fish Barrier in the Chicago Sanitary and Ship Canal
,”
J. Great Lakes Res.
,
41
(
2
), pp.
396
404
.
54.
Slater
,
M.
,
Yankielun
,
N.
,
Parker
,
J.
, and
Lewandowski
,
M. J.
,
2011
, “
CSSC Fish Barrier Simulated Rescuer Touch Point Results, Operating Guidance, and Recommendations for Rescuer Safety
,” United States Coast Guary Interim Study, Coast Guard Research and Development Center, New London, CT, Report No. CG-D-06-11.
You do not currently have access to this content.