An accurate and practical approach is necessary for predicting oil fraction in horizontal oil–water flows. In this study, a concept of a drift-flux model is adopted to develop a predictive method for the oil fraction in the horizontal oil–water flows due to its simplicity and practicality. A new drift-flux correlation for the horizontal oil–water flows is developed based on the least square method using collected experimental data. The distribution parameter is determined to be 1.05 for the data with the ratio of oil density to water density ranging from 0.787 to 1.00, whereas the oil fraction weighted mean drift velocity is set at 0 m/s due to the flow direction perpendicular to the gravity direction. The physical meaning for the order of unity of the distribution parameter is explained by introducing a simple model. The predictive capability of the new drift-flux correlation is examined using the collected database of oil–water flows in horizontal pipes under a variety of test conditions. It is demonstrated that the new drift-flux correlation can predict the existing oil fractions in the horizontal pipe channels with the mean absolute error, standard deviation, mean relative deviation, and mean absolute relative deviation being −0.0124, 0.0338, −3.25%, and 9.57%, respectively.

References

References
1.
Sharma
,
A.
,
Al-Sarkhi
,
A.
,
Sarica
,
C.
, and
Zhang
,
H. Q.
,
2011
, “
Modeling of Oil-Water Flow Using Energy Minimization Concept
,”
Int. J. Multiphase Flow
,
37
(
4
), pp.
326
335
.
2.
Charles
,
M. E.
,
Govier
,
G. W.
, and
Hodgson
,
G. W.
,
1961
, “
The Horizontal Pipeline Flow of Equal Density Oil-Water Mixtures
,”
Can. J. Chem. Eng.
,
39
(
1
), pp.
27
36
.
3.
Trallero
,
J. L.
,
1995
, “
Oil-Water Flow Patterns in Horizontal Pipe
,” Ph.D. dissertation, The University of Tulsa, Tulsa, OK.
4.
Trallero
,
J. L.
,
Sarica
,
C.
, and
Brill
,
J. P.
,
1997
, “
A Study of Oil/Water Flow Patterns in Horizontal Pipes
,”
SPE Prod. Facil.
,
12
(
03
), pp.
165
172
.
5.
Brauner
,
N.
, and
Moalem Maron
,
D.
,
1992
, “
Flow Pattern Transitions in Two-Phase Liquid-Liquid Flow in Horizontal Tubes
,”
Int. J. Multiphase Flow
,
18
(
1
), pp.
123
140
.
6.
Brauner
,
N.
,
Maron
,
D. M.
, and
Rovinsky
,
J.
,
1998
, “
A Two-Fluid Model for Stratified Flows With Curved Interfaces
,”
Int. J. Multiphase Flow
,
24
(
6
), pp.
975
1004
.
7.
Angeli
,
P.
, and
Hewitt
,
G. F.
,
2000
, “
Flow Structure in Horizontal Oil-Water Flow
,”
Int. J. Multiphase Flow
,
26
(
7
), pp.
1117
1140
.
8.
Dasari
,
A.
,
Desamala
,
A. B.
,
Ghosh
,
U. K.
,
Dasmahapatra
,
A. K.
, and
Mandal
,
T. K.
,
2014
, “
Correlations for Prediction of Pressure Gradient of Liquid-Liquid Flow Through a Circular Horizontal Pipe
,”
ASME J. Fluids Eng.
,
136
(
7
), p. 071302.
9.
Zuber
,
N.
, and
Findlay
,
J. A.
,
1965
, “
Average Volumetric Concentration in Two-Phase Flow Systems
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
453
468
.
10.
Al-Wahaibi
,
T.
,
Al-Wahaibi
,
Y.
,
Al-Ajmi
,
A.
,
Al-Hajri
,
R.
,
Yusuf
,
N.
,
Olawale
,
A. S.
, and
Mohammed
,
I. A.
,
2014
, “
Experimental Investigation on Flow Patterns and Pressure Gradient Through Two Pipe Diameters in Horizontal Oil-Water Flows
,”
J. Petrol. Sci. Eng.
,
122
, pp.
266
273
.
11.
Colombo
,
L. P. M.
,
Guilizzoni
,
M.
,
Sotgia
,
G. M.
, and
Marzorati
,
D.
,
2015
, “
Influence of Sudden Contractions on In Situ Volume Fractions for Oil-Water Flows in Horizontal Pipes
,”
Int. J. Heat Fluid Flow
,
53
, pp.
91
97
.
12.
Dong
,
X.
,
Tan
,
C.
,
Yuan
,
Y.
, and
Dong
,
F.
,
2016
, “
Measuring Oil-Water Two-Phase Flow Velocity With Continuous-Wave Ultrasound Doppler Sensor and Drift-Flux Model
,”
IEEE Trans. Instrum. Meas
,
65
(
5
), pp.
1098
1107
.
13.
Shi
,
X.
,
Dong
,
X.
,
Tan
,
C.
, and
Dong
,
F.
,
2016
, “
Flow Velocity Measurement Based on Ultrasonic Cross-Correlation Technique in Oil-Water Two-Phase Flow
,”
35th Chinese Control Conference
, Chengdu, China, July 27–29, pp.
4921
4925
.
14.
Fujii
,
T.
,
Ohta
,
J.
,
Nakazawa
,
T.
, and
Morimoto
,
O.
,
1994
, “
The Behavior of an Immiscible Equal-Density Liquid-Liquid Two-Phase Flow in a Horizontal Tube
,”
JSME Int. J
,
37
(
1
), pp.
22
29
.
15.
Xu
,
J.
,
Wu
,
Y.
,
Chang
,
Y.
, and
Guo
,
J.
,
2008
, “
Experimental Investigation on the Holdup Distribution of Oil-Water Two-Phase Flow in Horizontal Parallel Tubes
,”
Chem. Eng. Technol.
,
31
(
10
), pp.
1536
1540
.
16.
Li
,
D.
, and
Xu
,
J.
,
2015
, “
Measurement of Oil-Water Flow Via the Correlation of Turbine Flow Meter, Gamma Ray Densitometry and Drift-Flux Model
,”
J. Hydrodyn
,
27
(
4
), pp.
548
555
.
17.
Ishii
,
M.
, and
Hibiki
,
T.
,
2011
,
Thermo-Fluid Dynamics of Two-Phase Flow
,
2nd ed.
,
Springer
,
New York
.
18.
Russell
,
T. W. F.
,
Hodgson
,
G. W.
, and
Govier
,
G. W.
,
1959
, “
Horizontal Pipeline Flow of Mixtures of Oil and Water
,”
Can. J. Chem. Eng.
,
37
(
1
), pp.
9
17
.
19.
Lovick
,
J.
, and
Angeli
,
P.
,
2004
, “
Experimental Studies on the Dual Continuous Flow Pattern in Oil-Water Flows
,”
Int. J. Multiphase Flow
,
30
(
2
), pp.
139
157
.
20.
Abduvayt
,
P.
,
Manabe
,
R.
,
Watanabe
,
T.
, and
Arihara
,
N.
,
2004
, “
Analysis of Oil-Water Flow Tests in Horizontal, Hilly-Terrain, and Vertical Pipes
,”
SPE Annual Technical Conference and Exhibition
, pp.
1
13
.
21.
Raj
,
T. S.
,
Chakrabarti
,
D. P.
, and
Das
,
G.
,
2005
, “
Liquid-Liquid Stratified Flow Through Horizontal Conduits
,”
Chem. Eng. Tech.
,
28
(
8
), pp.
899
907
.
22.
Vielma
,
M.
,
Atmaca
,
S.
,
Sarica
,
C.
, and
Zhang
,
H.
,
2008
, “
Characterization of Oil/Water Flows in Horizontal Pipes
,”
SPE Proj. Facil. and Constr.
,
3
(
4
), pp.
1
21
.
23.
Liu
,
Y.
,
Zhang
,
H.
,
Wang
,
S.
, and
Wang
,
J.
,
2009
, “
Prediction of Pressure Gradient and Holdup in Horizontal Liquid–Liquid Segregated Flow With Small Eötvös Number
,”
Chem. Eng. Commun.
,
196
(
6
), pp.
697
714
.
24.
Xu
,
M.
,
Xiong
,
R. H.
,
Li
,
Y. F.
,
Yang
,
J. M.
,
Luo
,
X.
,
Yu
,
Y. B.
, and
Zhao
,
T. Z.
,
2010
, “
Pattern Transition and Holdup Behaviors of Horizontal Oil-Water Pipe Flow
,”
7th International Conference on Multiphase Flow
, pp.
1
6
.
25.
Rodriguez
,
I. H.
,
Yamaguti
,
H. K. B.
,
de Castro
,
M. S.
,
Da Silva
,
M. J.
, and
Rodriguez
,
O. M. H.
,
2011
, “
Slip Ratio in Dispersed Viscous Oil-Water Pipe Flow
,”
Exp. Therm. Fluid Sci.
,
35
(
1
), pp.
11
19
.
26.
Rodriguez
,
O. M. H.
, and
Baldani
,
L. S.
,
2012
, “
Prediction of Pressure Gradient and Holdup in Wavy Stratified Liquid – Liquid Inclined Pipe Flow
,”
J. Petrol. Sci. Eng.
,
96–97
, pp.
140
151
.
27.
Onuoha
,
M. D. U.
,
Ismail
,
I.
,
Ismail
,
A. S.
, and
Mansorm
,
F.
,
2016
, “
Experimental Determination of Flow Patterns and Water Holdup of Low Viscosity Oil-Water System in Horizontal Pipes
,”
Sains Malaysiana
,
45
(
11
), pp.
1635
1640
.http://www.ukm.my/jsm/pdf_files/SM-PDF-45-11-2016/07%20M.D.U%20Onuoha.pdf
28.
Hibiki
,
T.
, and
Ishii
,
M.
,
2003
, “
One-Dimensional Drift–Flux Model for Two-Phase Flow in a Large Diameter Pipe
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1773
1790
.
29.
Hibiki
,
T.
,
Mao
,
K.
, and
Ozaki
,
T.
,
2017
, “
Development of Void Fraction-Quality Correlation for Two-Phase Flow in Horizontal and Vertical Tube Bundles
,”
Prog. Nucl. Energy
,
97
, pp.
38
52
.
30.
Ishii
,
M.
,
1977
, “
One-Dimensional Drift Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes
,” Argonne National Laboratory, Lemont, Illinois, Report No.
ANL-77-47
.https://www.osti.gov/biblio/6871478-one-dimensional-drift-flux-model-constitutive-equations-relative-motion-between-phases-various-two-phase-flow-regimes
You do not currently have access to this content.