A small-disturbance model to study transonic steady condensing flow of pure steam around a thin airfoil is developed. Water vapor thermodynamics is described by the perfect gas model and its dynamics by the compressible inviscid flow equations. Classical nucleation and droplet growth theory for homogeneous and nonequilibrium condensation is used to compute the condensate mass fraction. The model is derived from an asymptotic analysis of the flow and condensation equations in terms of the proximity of upstream flow Mach number to 1, the small thickness ratio of airfoil, the small quantity of condensate, and the small angle-of-attack. The flow field may be described by a nonhomogeneous and nonlinear partial differential equation along with a set of four ordinary differential equations for calculating condensate mass fraction. The analysis provides a list of similarity parameters that describe the flow physics. A numerical scheme, which is composed of Murman and Cole's algorithm for the computation of flow parameters and Simpson's integration method for calculation of condensate mass fraction, is applied. The model is used to analyze the effects of heat release due to condensation on the aerodynamic performance of airfoils operating in steam at high temperatures and pressures near the vapor–liquid saturation dome.

References

References
1.
Bakhtar
,
F.
,
Ebrahimi
,
M.
, and
Webb
,
R. A.
,
1995
, “
On the Performance of a Cascade of Turbine Rotor Tip Section Blading in Nucleating Steam—Part 1: Surface Pressure Distributions
,”
Proc. Inst. Mech. Eng. C
,
209
(
2
), pp.
115
124
.
2.
Bakhtar
,
F.
,
Ebrahimi
,
M.
, and
Bamkole
,
B.
,
1995
, “
On the Performance of a Cascade of Turbine Rotor Tip Section Blading in Nucleating Steam—Part 2: Wake Traverses
,”
Proc. Inst. Mech. Eng. C
,
209
(
3
), pp.
169
177
.
3.
DiPippo
,
R.
,
2012
,
Geothermal Power Plants: Principles, Applications, Case Studies and Environmental Impact
,
3rd ed.
,
Butterworth-Heinemann
,
Oxford, UK
.
4.
Carlton
,
J.
,
2012
,
Marine Propellers and Propulsion
,
3rd ed.
,
Butterworths-Heinemann
,
Oxford, UK
.
5.
Schnerr
,
G. H.
, and
Dohrmann
,
U.
,
1990
, “
Transonic Flow Around Airfoils With Relaxation and Energy Supply by Homogeneous Condensation
,”
AIAA J.
,
28
(
7
), pp.
1187
1193
.
6.
Schnerr
,
G. H.
, and
Dohrmann
,
U.
,
1994
, “
Drag and Lift in Nonadiabatic Transonic Flow
,”
AIAA J.
,
32
(
1
), pp.
101
107
.
7.
Rusak
,
Z.
, and
Lee
,
J. C.
,
2000
, “
Transonic Flow of Moist Air Around a Thin Airfoil With Non-Equilibrium and Homogeneous Condensation
,”
J. Fluid Mech.
,
403
, pp.
173
199
.
8.
Wegener
,
P. P.
, and
Mack
,
L. M.
,
1958
, “
Condensation in Supersonic and Hypersonic Wind Tunnels
,”
Adv. Appl. Mech.
,
5
, pp.
307
447
.
9.
Hill
,
P. G.
,
1966
, “
Condensation of Water Vapor During Supersonic Expansion in Nozzles
,”
J. Fluid Mech.
,
25
(
3
), pp.
593
620
.
10.
Lee
,
J. C.
, and
Rusak
,
Z.
,
2001
, “
Parametric Investigation of Nonadiabatic Compressible Flow Around Airfoils
,”
Phys. Fluids
,
13
(
1
), pp.
315
323
.
11.
Moore
,
M. J.
,
Walters
,
P. T.
,
Crane
,
R. I.
, and
Davidson
,
B. J.
,
1973
, “
Predicting the Fog Drop Size in Wet Steam Turbines
,”
Wet Steam 4th Conference
,
Institute of Mechanical Engineers
,
UK
, pp.
101
109
.
12.
Bakhtar
,
F.
, and
Zidi
,
K.
,
1989
, “
Nucleation Phenomena in Flowing High-Pressure Steam: Experimental Results
,”
Proc. Inst. Mech. Eng. A
,
203
(
3
), pp.
195
200
.
13.
Kermani
,
M. J.
, and
Gerber
,
A. G.
,
2003
, “
A General Formula for the Evaluation of Thermodynamic and Aerodynamic Losses in Nucleating Steam Flow
,”
Int. J. Heat Mass Transfer
,
46
(
17
), pp.
3265
3278
.
14.
Gerber
,
A. G.
, and
Kermani
,
M. J.
,
2004
, “
A Pressure Based Eulerian-Eulerian Multi-Phase Model for Non-Equilibrium Condensation in Transonic Steam Flow
,”
Int. J. Heat Mass Transf
,
47
(
10–11
), pp.
2217
2231
.
15.
Bakhtar
,
F.
,
Young
,
J. B.
,
White
,
A. J.
, and
Simpson
,
D. A.
,
2005
, “
Classical Nucleation Theory and Its Application to Condensing Steam Flow Calculations
,”
Proc. Inst. Mech. Eng. C
,
219
(
12
), pp.
1315
1333
.
16.
Wróblewski
,
W.
,
Dykas
,
S.
, and
Gepert
,
A.
,
2009
, “
Steam Condensing Flow Modeling in Turbine Channels
,”
Int. J. Multiphase Flow
,
35
(
6
), pp.
498
506
.
17.
Starzmann
,
J.
,
Schatz
,
M.
,
Casey
,
M. V.
,
Mayer
,
J. F.
, and
Sieverding
,
F.
,
2011
, “
Modelling and Validation of Wet Steam Flow in a Low Pressure Steam Turbine
,”
ASME
Paper No. GT2011-45672.
18.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M. B.
,
2014
,
Fundamentals of Engineering Thermodynamics
,
8th ed.
,
Wiley, Inc
.,
Hoboken, NJ
.
19.
Cole
,
J. D.
, and
Cook
,
L. P.
,
2012
,
Transonic Aerodynamics
(North-Holland Series in Applied Mathematics and Mechanics, Vol. 30),
Elsevier Science Publisher B. V.
,
Amsterdam, The Netherlands
.
20.
Rusak
,
Z.
,
1993
, “
Transonic Flow Around the Leading Edge of a Thin Airfoil With a Parabolic Nose
,”
J. Fluid Mech.
,
248
, pp.
1
26
.
21.
Murman
,
E. M.
, and
Cole
,
J. D.
,
1971
, “
Calculation of Plane Steady Transonic Flows
,”
AIAA J.
,
9
(
1
), pp.
114
121
.
22.
Webster
,
B. E.
,
Shephard
,
M. S.
,
Rusak
,
Z.
, and
Flaherty
,
J. E.
,
1994
, “
Automated Adaptive Time-Discontinuous Finite Element Method for Unsteady Compressible Airfoil Aerodynamics
,”
AIAA J.
,
32
(
4
), pp.
748
757
.
You do not currently have access to this content.