Centrifugal pumps operate below their nominal capacity when handling gas–liquid flows. This problem is sensitive to many variables, such as the impeller speed and the liquid flow rate. Several works evaluate the effect of operating conditions in the pump performance, but few bring information about the associated gas–liquid flow dynamics. Studying the gas phase behavior, however, can help understanding why the pump performance is degraded depending on the operating condition. In this context, this paper presents a numerical and experimental study of the motion of bubbles in a centrifugal pump impeller. The casing and the impeller of a commercial pump were replaced by transparent components to allow evaluating the bubbles' trajectories through high-speed photography. The bubble motion was also evaluated with a numerical particle-tracking method. A good agreement between both approaches was found. The numerical model is explored to evaluate how the bubble trajectories are affected by variables such as the bubble diameter and the liquid flow rate. Results show that the displacement of bubbles in the impeller is hindered by an increase of their diameter and impeller speed but facilitated by an increase of the liquid flow rate. A force analysis to support understanding the pattern of the bubble trajectories was provided. This analysis should enlighten the readers about the dynamics leading to bubble coalescence inside an impeller channel, which is the main reason behind the performance degradation that pumps experience when operating with gas–liquid flows.

References

References
1.
Gu¨lich
,
J. F.
,
2010
,
Centrifugal Pumps
,
Springer
,
Berlin, Germany
.
2.
Pumps
,
S.
,
2010
,
Centrifugal Pump Handbook
,
Butterworth-Heinemann
,
Oxford, UK
.
3.
Poullikkas
,
A.
,
2000
, “
Two Phase Flow Performance of Nuclear Reactor Cooling Pumps
,”
Prog. Nucl. Energy
,
36
(
2
), pp.
123
130
.
4.
Cooper
,
P.
,
Schiavello
,
B.
,
Marolles
,
C.
,
Salis
,
J.
,
Prang
,
A. J.
, and
Broussard
,
D. H.
,
1996
, “
Tutorial on Multiphase Gas-Liquid Pumping
,”
13th International Pump User Symposium
, Houston, TX, pp.
159
174
.
5.
Murakami
,
M.
, and
Minemura
,
K.
,
1974
, “
Effects of Entrained Air on the Performance of a Centrifugal Pump: 1st Report, Performance and Flow Conditions
,”
Bull. JSME
,
17
(
110
), pp.
1047
1055
.
6.
Murakami
,
M.
, and
Minemura
,
K.
,
1974
, “
Effects of Entrained Air on the Performance of Centrifugal Pumps: 2nd Report, Effects of Number of Blades
,”
Bull. JSME
,
17
(
112
), pp.
1286
1295
.
7.
Murakami
,
M.
, and
Minemura
,
K.
,
1976
, “
Effects of Running Clearance of Semi-Open Impeller Pumps Under Air Admitting Conditions
,”
Bull. JSME
,
19
(
136
), pp.
1141
1148
.
8.
Minemura
,
K.
,
Murakami
,
M.
, and
Kataoka
,
T.
,
1983
, “
Pressure Distribution in a Centrifugal Impeller Handling Air-Water Mixtures
,”
Bull. JSME
,
26
(
220
), pp.
1727
1734
.
9.
Lea
,
J. F.
, and
Bearden
,
J. L.
,
1982
, “
Effect of Gaseous Fluids on Submersible Pump Performance
,”
J. Pet. Technol.
,
34
(
12
), pp.
2922
2930
.
10.
Sachdeva
,
R.
,
Doty
,
D. R.
, and
Schmidt
,
Z.
,
1994
, “
Performance of Electric Submersible Pumps in Gassy Wells
,”
SPE Prod. Facil.
,
9
(
01
), pp.
55
60
.
11.
Pessoa
,
R.
, and
Prado
,
M.
,
2003
, “
Two-Phase Flow Performance for Electrical Submersible Pump Stages
,”
SPE Prod. Facil.
,
18
(
1
), pp.
13
27
.
12.
Barrios
,
L.
, and
Prado
,
M.
,
2011
, “
Modeling Two-Phase Flow Inside an Electrical Submersible Pump Stage
,”
ASME J. Energy Resour. Technol.
,
133
(
4
), p.
042902
.
13.
Gamboa
,
J.
, and
Prado
,
M.
,
2012
, “
Experimental Study of Two-Phase Performance of an Electric-Submersible-Pump Stage
,”
SPE Prod. Facil.
,
27
(
4
), pp.
414
421
.
14.
Gamboa
,
J.
, and
Prado
,
M.
,
2010
, “
Visualization Study of the Performance Breakdown in the Two-Phase Performance of an Electrical Submersible Pump
,”
26th International Pump User Symposium
, Houston, TX, pp.
1
15
.
15.
Barrios
,
L.
,
2007
, “
Visualization and Modeling of Multiphase Performance Inside an Electrical Submersible Pump
,” Ph.D. dissertation, The University of Tulsa, Tulsa, OK.
16.
Estevam
,
V.
,
2002
, “
Uma Análise Fenomenológica da Operação de Bomba Centrífuga Com Escoamento Bifásico
,” Ph.D. thesis (In Portuguese), Universidade Estadual de Campinas, Campinas, Brazil.
17.
Trevisan
,
F. E.
, and
Prado
,
M.
,
2011
, “
Experimental Investigation of the Viscous Effect on Two-Phase-Flow Patterns and Hydraulic Performance of Electrical Submersible Pumps
,”
J. Can. Pet. Technol.
,
50
(
4
), pp.
45
52
.
18.
Posa
,
A.
,
Lippolis
,
A.
, and
Balaras
,
E.
,
2015
, “
Large-Eddy Simulation of a Mixed-Flow Pump at Off-Design Conditions
,”
ASME J. Fluids Eng.
,
137
(
10
), p.
101302
.
19.
Gao
,
B.
,
Zhang
,
N.
,
Li
,
Z.
,
Ni
,
D.
, and
Yang
,
M.
,
2016
, “
Influence of the Blade Trailing Edge Profile on the Performance and Unsteady Pressure Pulsations in a Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051106
.
20.
Posa
,
A.
,
Lippolis
,
A.
, and
Balaras
,
E.
,
2016
, “
Investigation of Separation Phenomena in a Radial Pump at Reduced Flow Rate by Large-Eddy Simulation
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121101
.
21.
Minemura
,
K.
, and
Uchiyama
,
T.
,
1993
, “
Three-Dimensional Calculation of Air-Water Two-Phase Flow in Centrifugal Pump Impeller Based on a Bubbly Flow Model
,”
ASME J. Fluids Eng.
,
115
(
4
), p.
766
.
22.
Caridad
,
J.
, and
Kenyery
,
F.
,
2004
, “
CFD Analysis of Electric Submersible Pumps (ESP) Handling Two-Phase Mixtures
,”
ASME J. Energy Resour. Technol.
,
126
(
2
), pp.
99
104
.
23.
Caridad
,
J.
,
Asuaje
,
M.
,
Kenyery
,
F.
,
Tremante
,
A.
, and
Aguillón
,
O.
,
2008
, “
Characterization of a Centrifugal Pump Impeller Under Two-Phase Flow Conditions
,”
J. Pet. Sci. Eng.
,
63
(
1–4
), pp.
18
22
.
24.
Zhu
,
J.
, and
Zhang
,
H.
,
2017
, “
Numerical Study on Electrical-Submersible-Pump Two-Phase Performance and Bubble-Size Modeling
,”
SPE Prod. Oper.
,
32
(
3
), pp.
1
12
.
25.
Minemura
,
K.
, and
Murakami
,
M.
,
1980
, “
A Theoretical Study on Air Bubble Motion in a Centrifugal Pump Impeller
,”
ASME J. Fluids Eng.
,
102
(
4
), pp.
446
453
.
26.
Stel
,
H.
,
Amaral
,
G. D. L.
,
Negrão
,
C. O. R.
,
Chiva
,
S.
,
Estevam
,
V.
, and
Morales
,
R. E. M.
,
2013
, “
Numerical Analysis of the Fluid Flow in the First Stage of a Two-Stage Centrifugal Pump With a Vaned Diffuser
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071104
.
27.
ANSYS
,
2013
, “
ANSYS® Academic Research, Release 14.5, Help System, CFX Documentation
,”
ANSYS, Inc
,
Canonsburg, PA
.
28.
Yeoh
,
G. H.
, and
Tu
,
J.
,
2010
,
Computational Techniques for Multiphase Flows
,
Butterworth-Heinemann
,
Oxford, UK
.
29.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
30.
Dhakal
,
T. P.
,
Walters
,
D. K.
, and
Strasser
,
W.
,
2014
, “
Numerical Study of Gas-Cyclone Airflow: An Investigation of Turbulence Modelling Approaches
,”
Int. J. Comput. Fluid Dyn.
,
28
(
1–2
), pp.
1
15
.
31.
Tao
,
R.
,
Xiao
,
R.
,
Yang
,
W.
, and
Wang
,
F.
,
2014
, “
A Comparative Assessment of Spalart Shur Rotation/Curvature Correction in RANS Simulations in a Centrifugal Pump Impeller
,”
Math. Probl. Eng.
,
2014
, p.
342905
.
32.
Barth
,
T.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No. AIAA-89-0036.
33.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.
You do not currently have access to this content.