Ionic wind pumps have attracted considerable interest because of their low energy consumption, compact structures, flexible designs, and lack of moving parts. However, large cross-sectional ionic wind pumps have yet to be numerically analyzed and experimentally optimized. Accordingly, this study develops a large cross-sectional ionic wind pump with multiple needles-to-mesh electrode, as well as analyzes its flow characteristics using a proposed full three-dimensional simulation method validated with experimental data. To obtain a considerably high outlet average velocity, experimental studies and numerical methods are employed to optimize the pump's configuration parameters, including needle electrode configuration, needle diameter, grid size, and gap between electrodes. The breakdown voltage and highest velocity corresponding to the breakdown voltage increase with an increase in the needle tip-to-mesh gap. After parametric optimization, a maximum velocity of 2.55 m/s and a flow rate of 2868 L/min are achieved.

References

References
1.
Zhao
,
P.
,
Portugal
,
S.
, and
Roy
,
S.
,
2015
, “
Efficient Needle Plasma Actuators for Flow Control and Surface Cooling
,”
Appl. Phys. Lett.
,
42
(
4
), pp.
031176
032004
.
2.
Lakeh
,
R. B.
, and
Molki
,
M.
,
2010
, “
Patterns of Airflow in Circular Tubes Caused by a Corona Jet With Concentric and Eccentric Wire Electrodes
,”
ASME J. Fluids Eng.
,
132
(
8
), p.
081201
.
3.
D. H. S.
,
Baek
,
S. H.
, and
Han
,
S. K.
,
2016
, “
Development of Heat Sink With Ionic Wind for LED Cooling
,”
Int. J. Heat Mass Transfer.
,
93
, pp.
516
528
.
4.
Wang
,
S.
,
Zhang
,
J.
,
Kong
,
L.
,
Qu
,
Z.
, and
Tao
,
W.
,
2017
, “
An Numerical Investigation on the Cooling Capacity of Needle-Ring Type Electrostatic Fluid Accelerators for round Plate With Uniform and Non-Uniform Heat Flux
,”
Int. J. Heat Mass Transfer.
,
113
, pp.
1
5
.
5.
Jacobs
,
S. V.
, and
Xu
,
K. G.
,
2016
, “
Examination of Ionic Wind and Cathode Sheath Effects in a E-Field Premixed Flame With Ion Density Measurements
,”
Phys. Plasmas.
,
23
(
4
), p.
156
.
6.
Park
,
D. G.
, and
Chung
,
S. H.
,
Cha
,
M. S.
,
2016
, “
Bidirectional Ionic Wind in Nonpremixed Counterflow Flames With DC Electric Fields
,”
Combust. Flame.
,
168
, pp.
138
146
.
7.
Hasnain
,
S. M.
,
Bakshi
,
A.
, and
Selvaganapathy
,
P. R.
,
C. Y. C.
,
2011
, “
On the Modeling and Simulation of Ion Drag Electrohydrodynamic Micropumps
,”
ASME J. Fluids Eng.
,
133
(
5
), pp.
2444
2453
.
8.
Monrolin
,
N.
,
Plouraboué
,
F.
, and
Praud
,
O.
,
2017
, “
Electrohydrodynamic Thrust for in-Atmosphere Propulsion
,”
AIAA J.
,
55
(
12
), pp.
1
10
.
9.
Fylladitakis
,
E. D.
,
Theodoridis
,
M. P.
, and
Moronis
,
A. X.
,
2014
, “
Review on the History, Research, and Applications of Electrohydrodynamics
,”
IEEE Trans. Plasma Sci.
,
42
(
2
), pp.
358
375
.
10.
Johnson
,
M. J.
, and
Go
,
D. B.
,
2017
, “
Recent Advances in Electrohydrodynamic Pumps Operated by Ionic Winds: A Review
,”
Plasma Sources Sci. Technol.
,
26
(
10
), pp. 1–27.
11.
Rickard
,
M.
,
Dunn-rankin
,
D.
,
Weinberg
,
F.
, and
Carleton
,
F.
,
2005
, “
Characterization of Ionic Wind Velocity
,”
J. Electrostatics.
,
63
(
6–10
), pp.
711
716
.
12.
Tsubone
,
H.
,
Ueno
,
J.
,
Komeili
,
B.
,
Minami
,
S.
,
Harvel
,
G. D.
,
Urashima
,
K.
,
Ching
,
C. Y.
, and
Chang
,
J. S.
,
2008
, “
Flow Characteristics of dc Wire-Non-Parallel Plate Electrohydrodynamic Gas Pumps
,”
J. Electrostatics.
,
66
(
1–2
), pp.
115
121
.
13.
Chang
,
J. S.
,
Tsubone
,
H.
,
Chun
,
Y. N.
,
Berezin
,
A. A.
, and
Urashima
,
K.
,
2009
, “
Mechanism of Electrohydrodynamically Induced Flow in a Wire-Non-Parallel Plate Electrode Type Gas Pump
,”
J. Electrostatics.
,
67
(
2–3
), pp.
335
339
.
14.
Komeili
,
B.
,
Chang
,
J. S.
,
Harvel
,
G. D.
,
Ching
,
C. Y.
, and
Brocilo
,
D.
,
2008
, “
Flow Characteristics of Wire-Rod Type Electrohydrodynamic Gas Pump Under Negative Corona Operations
,”
J. Electrostatics.
,
66
(
5–6
), pp.
342
353
.
15.
Qiu
,
W.
,
Xia
,
L.
,
Tan
,
X.
, and
Yang
,
L.
,
2010
, “
The Velocity Characteristics of a Serial-Staged EHD Gas Pump in Air
,”
IEEE Trans. Plasma Sci.
,
38
(
10
), pp.
2848
2853
.
16.
Qiu
,
W.
,
Xia
,
L. Z.
,
Yang
,
L. J.
,
Zhang
,
Q. G.
,
Lei
,
X.
, and
Lin
,
C.
,
2011
, “
Experimental Study on the Velocity and Efficiency Characteristics of a Serial Staged Needle Array-Mesh Type EHD Gas Pump
,”
Plasma Sci. Technol.
,
13
(
6
), p.
693
.
17.
Lee
,
S. J.
,
Li
,
L.
,
Kwon
,
K.
,
Kim
,
W.
, and
Kim
,
D.
,
2015
, “
Parallel Integration of Ionic Wind Generators on PCBs for Enhancing Flow Rate
,”
Microsyst. Technol.
,
21
(
7
), pp.
1465
1471
.
18.
Huang
,
R. T.
,
Sheu
,
W. J.
, and
Wang
,
C. C.
,
2009
, “
Heat Transfer Enhancement by Needle-Arrayed Electrodes—An EHD Integrated Cooling System
,”
Energy Convers. Manage.
,
50
(
7
), pp.
1789
1796
.
19.
Moon
,
J. D.
,
Hwang
,
D. H.
, and
Geum
,
S. T.
,
2009
, “
An EHD Gas Pump Utilizing a Ring/Needle Electrode
,”
IEEE Trans. Dielectrics Electr. Insul.
,
16
(
2
), pp.
352
358
.
20.
Bouazza
,
M. R.
,
Yanallah
,
K.
,
Pontiga
,
F.
, and
Chen
,
J. H.
,
2018
, “
A Simplified Formulation of Wire-Plate Corona Discharge in Air: Application to the Ion Wind Simulation
,”
J. Electrostatics.
,
92
, pp.
54
65
.
21.
Singhal
,
V.
, and
Garimella
,
S. V.
,
2005
, “
Influence of Bulk Fluid Velocity on the Efficiency of Electrohydrodynamic Pumping
,”
ASME J. Fluids Eng.
,
127
(
3
), pp. 484–494.
22.
Zhao
,
L.
, and
Adamiak
,
K.
,
2005
, “
EHD Flow in Air Produced by Electric Corona Discharge in Pin–Plate Configuration
,”
J. Electrostatics.
,
63
(
3–4
), pp.
337
350
.
23.
Jewell-larsen
,
N. E.
,
Hsu
,
C. P.
,
Krichtafovitch
,
I. A.
, and
Montgomery
,
S.
,
2008
, “
CFD Analysis of Electrostatic Fluid Accelerators for Forced Convection Cooling
,”
IEEE Trans. Dielectrics Electr. Insul.
,
15
(
6
), pp.
1745
1753
.
24.
Jewell-larsen
,
N. E.
,
Karpov
,
S. V.
,
Ran
,
H.
,
Savalia
,
P.
, and
Honer
,
K. A.
,
2010
, “
Investigation of Dust in Electrohydrodynamic (EHD) Systems
,” 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM
), Santa Clara, CA, Feb. 21–25.
25.
Corke
,
T. C.
,
Enloe
,
C. L.
, and
Wilkinson
,
S. P.
,
2010
, “
Dielectric Barrier Discharge Plasma Actuators for Flow Control
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
505
529
.
26.
Shan
,
H.
, and
Lee
,
Y. T.
,
2014
, “
Numerical Modeling of Dielectric Barrier Discharge Plasma Actuation
,”
ASME J. Fluids Eng.
,
138
(5), p. 051104.
27.
Farnoosh
,
N.
,
Adamiak
,
K.
, and
Castle
,
G. P.
,
2010
, “
3-D Numerical Analysis of EHD Turbulent Flow and Mono-Disperse Charged Particle Transport and Collection in a Wire-Plate ESP
,”
J. Electrostatics.
,
68
(
6
), pp.
513
522
.
28.
Feng
,
J. Q.
,
1999
, “
Application of Galerkin Finite-Element Method With Newton Iterations in Computing Steady-State Solutions of Unipolar Charge Currents in Corona Devices
,”
J. Comput. Phys.
,
151
(
2
), pp.
969
989
.
29.
Kaptsov
,
N. A.
,
1947
,
Elektricheskie Yavleniya v Gazakh i Vakuume
,
OGIZ
,
Moscow, Russia
.
30.
Peek
,
F. W.
,
1920
,
Dielectric Phenomena in High Voltage Engineering
,
McGraw-Hill Book Company
, New York.
31.
Kim
,
C.
,
Park
,
D.
,
Noh
,
K. C.
, and
Hwang
,
J.
,
2010
, “
Velocity and Energy Conversion Efficiency Characteristics of Ionic Wind Generator in a Multistage Configuration
,”
J. Electrostatics.
,
68
(
1
), pp.
36
41
.
32.
Mazumder
,
A. H.
, and
Lai
,
F. C.
,
2014
, “
Enhancement in Gas Pumping in a Square Channel With Two-Stage Corona Wind Generator
,”
IEEE Trans. Ind. Appl.
,
50
(
4
), pp.
2296
2305
.
You do not currently have access to this content.