Wind farms have often been located in close proximity to coastal cliffs to take advantage of the consistent wind regimes associated with many coastal regions, as well as to extract any available increase in flow speed that might be generated by such cliffs. However, coastal cliffs are often rugged as a result of erosion and the natural shape of the landform. This research explores the impact of the three-dimensional cliff topography on the wind flow. Specifically, wind tunnel testing is conducted, modeling the naturally occurring ruggedness as sawtooth lateral variations of various amplitudes applied to a forward facing step (FFS). Surface shear stress visualization techniques have been employed to derive the flow topology associated with different topographies, while pressure probe measurements are used to measure the development of wind speed and turbulence intensity (TI). Pressure probe measurements and surface pressure taps also assist to determine the lateral and vertical extents of the vortex structures identified. In particular, flow fields characterized by the probe measurements were consistent with vortex bursting that is described by various researchers in the flow over delta wings. Such bursting is observed as a stagnation and corresponding expansion of the vortex. Based on these observations, recommendations are provided for the siting of wind turbines near analogous cliffs.

References

References
1.
Bowen
,
A. J.
, and
Lindley
,
D.
,
1977
, “
A Wind Tunnel Investigation of the Wind Speed and Turbulence Characteristics Close to the Ground Over Various Shaped Escarpments
,”
Boundary Layer Meterol.
12
(
3
), pp.
259
271
.
2.
Camussi
,
R.
,
Felli
,
M.
,
Pereira
,
F.
,
Aloisio
,
G.
, and
Di Marco
,
A.
,
2008
, “
Statistical Properties of Wall Pressure Fluctuations Over a Forward Facing Step
,”
Phys. Fluids
,
20
(
7
), pp. 075113-1–075113-13.
3.
Largeau
,
J. F.
, and
Moriniere
,
V.
,
2007
, “
Wall Pressure Fluctuations and Topology in Separated Flows Over a Forward-Facing Step
,”
Exp. Fluids
,
42
(
1
), pp.
21
40
.
4.
Leclercq
,
D.
,
Jacob
,
M.
,
Louisot
,
A.
, and
Talotte
,
C.
,
2001
, “
Forward-Backward Facing Step Pair: Aerodynamic Flow, Wall Pressure and Acoustic Characterisation
,”
AIAA
Paper No. AIAA-2001-2249.
5.
Moss
,
W.
, and
Baker
,
S.
,
1980
, “
Re-Circulating Flows Associated With Two-Dimensional Steps
,”
Aeronaut. J.
,
31
(
3
), pp.
151
172
.
6.
Ren
,
H.
, and
Wu
,
Y.-T.
,
2011
, “
Turbulent Boundary Layers Over Smooth and Rough Forward-Facing Steps
,”
Phys. Fluids
,
23
(
4
), pp.
1
17
.
7.
Sherry
,
M.
,
Lo Jacono
,
D.
, and
Sheridan
,
J.
,
2010
, “
An Experimental Investigation of the Recirculation Zone Formed Downstream of a Forward Facing Step
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
12
), pp.
888
894
.
8.
Rowcroft
,
J.
,
Burton
,
D.
,
Blackburn
,
H. M.
, and
Sheridan
,
J.
,
2014
, “
Surface Flow Visualisation Over Forward Facing Steps With Varying Yaw Angle
,”
J. Phys.: Conf. Ser.
,
555
(
1
), p.
012086
.
9.
Rowcroft
,
J.
,
Burton
,
D.
,
Blackburn
,
H. M.
, and
Sheridan
,
J.
,
2015
, “
Siting Wind Turbines Near Cliffs—The Effect of Wind Direction
,”
Wind Energy
,
19
(
8
), pp.
1469
1484
.
10.
Cochard
,
S.
,
Letchford
,
C. W.
,
Earl
,
T. A.
, and
Montlaur
,
A.
,
2012
, “
Formation of Tip-Vortices on Triangular Prismatic-Shaped Cliffs—Part 1: A Wind Tunnel Study
,”
J. Wind Eng. Ind. Aerodyn.
,
109
, pp.
9
20
.
11.
Montlaur
,
A.
,
Cochard
,
S.
, and
Fletcher
,
D. F.
,
2012
, “
Formation of Tip-Vortices on Triangular Prismatic-Shaped Cliffs—Part 2: A Computational Fluid Dynamics Study
,”
J. Wind Eng. Ind. Aerodyn.
,
109
, pp.
21
30
.
12.
Hoerner
,
S. F.
, and
Borst
,
H. V.
,
1985
, “
Fluid-Dynamic Lift; Practical Information on Aerodynamic and Hydrodynamic Lift
,” Liselotte A. Hoerner, Bricktown, NJ.
13.
Gad-el-Hak
,
M.
, and
Blackwelder
,
R. F.
,
1985
, “
The Discrete Vortices From a Delta Wing
,”
AIAA J.
,
23
(
6
), pp.
961
962
.
14.
Lowson
,
M. V.
,
Riley
,
A. J.
, and
Swales
,
C.
,
1995
, “
Flow Structures Over Delta Wings
,” 33rd Aerospace Sciences Meeting, Reno, NV, Jan 9–12, p. 586
15.
Gordnier
,
R.
, and
Visbal
,
M. R.
,
1994
, “
Unsteady Vortex Structure Over a Delta Wing
,”
J. Aircr.
,
31
(
1
), pp.
243
248
.
16.
Gursul
,
I.
,
2005
, “
Review of Unsteady Vortex Flows Over Slender Delta Wings
,”
J. Aircr.
,
42
(
2
), pp.
299
319
.
17.
Wentz
,
W. H.
, and
Kohlman
,
D. L.
,
1971
, “
Vortex Breakdown on Slender Sharp-Edged Wings
,”
J. Aircr.
,
8
(
3
), pp.
156
161
.
18.
Pearson
,
D. S.
,
Goulart
,
P. J.
, and
Ganapathisubramani
,
B.
,
2013
, “
Turbulent Separation Upstream of a Forward-Facing Step
,”
J. Fluid Mech.
,
724
, pp.
284
304
.
19.
Katz
,
J.
,
1999
, “
Wing/Vortex Interactions and Wing Rock
,”
Prog. Aerosp. Sci.
,
35
(
7
), pp.
727
750
.
20.
Rediniotis
,
O. K.
,
Stapountzis
,
H.
, and
Telionis
,
D. P.
,
1989
, “
Vortex Shedding Over Delta Wings
,”
AIAA J.
,
28
(
5
), pp.
944
946
.
21.
Rediniotis
,
O. K.
,
Stapountzis
,
H.
, and
Telionis
,
D. P.
,
1993
, “
Periodic Vortex Shedding Over Delta Wings
,”
AIAA J.
,
31
(
9
), pp.
1555
1562
.
22.
Hall
,
M. G.
,
1972
, “
Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
4
(
1
), pp.
195
218
.
23.
Gursul
,
I.
,
Gordnier
,
R.
, and
Visbal
,
M.
,
2005
, “
Unsteady Aerodynamics of Nonslender Delta Wings
,”
Prog. Aerosp. Sci.
,
41
(
7
), pp.
515
557
.
24.
Goruney
,
T.
, and
Rockwell
,
D.
,
2009
, “
Flow past a Delta Wing With a Sinusoidal Leading Edge: Near-Surface Topology and Flow Structure
,”
Exp. Fluids
,
47
(
2
), pp.
321
331
.
25.
Lange
,
J.
,
Berg
,
J. M. J.
,
Parvu
,
D.
,
Kilpatrick
,
R.
,
Costache
,
A.
,
Chowdhury
,
J.
,
Siddiqui
,
K.
, and
Hangan
,
H.
,
2017
, “
For Wind Turbines in Complex Terrain, the Devil Is in the Detail
,”
Environ. Res. Lett.
,
12
(
9
), p.
094020
.
26.
LoTufo
,
J.
,
2017
, “
Full-Scale and Wind Tunnel Investigation of the Flow Field Over a Coastal Escarpment
,”
Master of Engineering Science
,
University of Western Ontario
, Canada, ON.
27.
Rowcroft
,
J.
,
2015
, “
Investigation Into Wind Flow Over Complex Topography and Escarpments for Wind Turbine Siting
,” Ph.D., Monash University, Melbourne, Australia.
28.
Mann
,
J.
,
Angelou
,
N.
,
Sjöholm
,
M.
,
Mikkelson
,
T.
,
Hansen
,
K. H.
,
Cavar
,
D.
, and
Berg
,
J.
,
2012
, “
Laser Scanning of a Recirculation Zone on the Bolund Escarpment
,”
The Science of Making Torque From Wind
,
IOP Publishing
,
Oldenburg, Germany
.
29.
Wai-Fah, C., and Lui, E, M.,
2005
,
Handbook of Structural Engineering
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
.
30.
Nieuwstadt
,
1984
, “
The Turbulent Structure of the Stable, Nocturnal Boundary Layer," American Meteorological Society
,”
J. Atmos. Sci.
,
41
(
14
), pp.
2202
2216
.
31.
H.
,
Wang
,
R. J.
,
Barthelmie
,
S. C.
,
Pryor
, and
H. G.
,
Kim
,
2014
, “
A New Turbulence Model for Offshore Wind Turbine Standards
,”
Wind Energy
,
17
(
10
), pp.
1587
1604
.
32.
Perry
,
A. E.
, and
Chong
,
M. S.
,
1994
, “
Topology of Flow Patterns in Vortex Motions and Turbulence
,”
Appl. Sci. Res.
,
53
(
3–4
), pp.
357
374
.
33.
Hooper
,
J. D.
, and
Musgrove
,
A. R.
,
1991
, “
Multi-Hole Pressure Probes for the Determination of the Total Velocity Vector in Turbulent Single-Phase Flow
,”
Fourth International Symposium on Transport Phenomena in Heat and Mass TransferSydney
, pp.
1364
1373
.
34.
Hooper
,
J. D.
, and
Musgrove
,
A. R.
,
1997
, “
Reynolds Stress, Mean Velocity, and Dynamic Static Pressure Measurement by a Four-Hole Pressure Probe
,”
Exp. Therm. Fluid Sci.
,
15
(
4
), pp.
375
383
.
35.
Musgrove
,
A. R.
, and
Hooper
,
J. D.
,
1993
, “
Pressure Probe Measurement OtF He Turbulent Stress Distribution in a Swirling Jet
,”
Third World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
,
M. D.
Kelleher
,
R. K.
Shah
,
K. R.
Sreenivasan
,
Y.
,
Joshi
, eds., pp.
172
179
.
36.
Crouch
,
T.
,
Burton
,
D.
,
Brown
,
N. A. T.
,
Thompson
,
M. C.
, and
Sheridan
,
J.
,
2014
, “
Flow Topology in the Wake of a Cyclist and Its Effect on Aerodynamic Drag
,”
J. Fluid Mech.
,
748
, pp.
5
35
.
37.
Bell
,
J. R.
,
Burton
,
D.
,
Thompson
,
M. C.
,
Herbst
,
A.
, and
Sheridan
,
J.
,
2014
, “
Wind Tunnel Analysis of the Slipstream and Wake of a High-Speed Train
,”
J. Wind Eng. Ind. Aerodyn.
,
134
, pp.
122
138
.
38.
Chen
,
J.
,
Haynes
,
B. S.
, and
Fletcher
,
D. F.
,
2000
, “
Cobra Probe Measurements of Mean Velocities, Reynolds Stresses and Higher-Order Velocity Correlations in Pipe Flow
,”
Exp. Therm. Fluid Sci.
,
21
(
4
), pp.
206
217
.
39.
Hunt
,
J. C. R.
,
Abell
,
C. J.
,
Peterka
,
J. A.
, and
Woo
,
H.
,
1978
, “
Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization
,”
J. Fluid Mech.
,
86
(
1
), pp.
179
200
.
40.
Werle
,
H.
,
1954
, “
Quelques Resultants Experimentaux Sur Les Ailes en Fleche, Aux Faibles Vitesses, Obtenus en Tunnel Hydrodynamicque
,”
La Recherche Aeronautique
,
41
, pp.
15
21
.
41.
Castro
,
I. P.
, and
Dianat
,
M.
,
1983
, “
Surface Flow Patterns on Rectangular Bodies in Thick Boundary Layers
,”
J. Wind Eng. Ind. Aerodyn.
,
11
(
1–3
), pp.
107
119
.
You do not currently have access to this content.