In order to help the design of miniature centrifugal pumps, the design method for macrosize centrifugal pumps is reviewed and the critical parameter, the flow coefficient, is examined in this paper for the miniature centrifugal pumps. The performance of the pumps designed is analyzed theoretically, numerically, and experimentally. Both numerical and theoretical results show that the value of the optimized flow coefficient is approximately 1.47. This value is about five times larger than the recommended value using conventional design technique for macrosize pumps. The optimum radius ratio obtained numerically is approximately 0.4. It can be concluded that the design approach for macrosize pumps is not applicable for pumps in the scale of decimeters. The results obtained in the present study provide us guidelines on the design and performance study of the miniature centrifugal pump.

References

References
1.
Wang
,
X.
,
Cheng
,
C.
,
Wang
,
S.
, and
Liu
,
S.
,
2009
, “
Electroosmotic Pumps and Their Applications in Microfluidic Systems
,”
Microfluid. Nanofluid.
,
6
(
2
), pp.
145
162
.
3.
Dönmez
,
A. H.
,
Yumurtacı
., and
Kavurmacıoğlu
,
L.
,
2018
, “
The Effect of Inlet Blade Angle Variation on Cavitation Performance of a Centrifugal Pump: A Parametric Study
,”
ASME J. Fluids Eng.
,
141
(
2
), p.
021101
.
4.
Zhou
,
L.
,
Shi
,
W.
,
Li
,
W.
, and
Agarwal
,
R.
,
2013
, “
Numerical and Experimental Study of Axial Force and Hydraulic Performance in a Deep-Well Centrifugal Pump With Different Impeller Rear Shroud Radius
,”
ASME J. Fluids Eng.
,
135
(
10
), p.
104501
.
5.
Cao
,
L.
,
Zhang
,
Y.
,
Wang
,
Z.
,
Xiao
,
Y.
, and
Liu
,
R.
,
2015
, “
Effect of Axial Clearance on the Efficiency of a Shrouded Centrifugal Pump
,”
ASME J. Fluids Eng.
,
137
(
7
), p.
071101
.
6.
Yan
,
P.
,
Chu
,
N.
,
Wu
,
D.
,
Cao
,
L.
,
Yang
,
S.
, and
Wu
,
P.
,
2016
, “
Computational Fluid Dynamics-Based Pump Redesign to Improve Efficiency and Decrease Unsteady Radial Forces
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011101
.
7.
Anderson
,
J. B.
,
Wood
,
H. G.
,
Allaire
,
P. E.
, and
Olsen
,
D. B.
,
2000
, “
Numerical Analysis of Blood Flow in the Clearance Regions of a Continuous Flow Artificial Heart Pump
,”
Artif. Organs
,
24
(
6
), pp.
492
500
.
8.
Liu
,
G.
,
2014
, “
Effects of Geometrical Parameters on Performance of Miniature Centrifugal Pump
,”
Ph.D. dissertation
, Nanyang Technological University, Singapore.https://repository.ntu.edu.sg/handle/10356/61904
9.
Karassik
,
I. J.
,
Cooper
,
P.
, and
Heald
,
C. C.
,
2008
,
Pump Handbook
,
McGraw-Hill
,
New York
.
10.
Stepanoff
,
A. J.
,
1957
,
Centrifugal and Axial Flow Pumps: Theory, Design, and Application
,
Wiley
,
New York
.
11.
von Backstrom
,
T. W.
,
2006
, “
A Unified Correlation for Slip Factor in Centrifugal Impellers
,”
ASME J. Turbomach.
,
128
(
1
), pp.
1
10
.
12.
Teo
,
J. B.
,
Chan
,
W. K.
, and
Wong
,
Y. W.
,
2010
, “
Prediction of Leakage Flow in a Shrouded Centrifugal Blood Pump
,”
Artif. Organs
,
34
(
9
), pp.
788
791
.
13.
Senoo
,
Y.
, and
Ishida
,
M.
,
1986
, “
Pressure Loss Due to the Tip Clearance of Impeller Blades in Centrifugal and Axial Blowers
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
32
37
.
14.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Friction Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
232
.
15.
Lobanoff
,
V. S.
, and
Ross
,
R. R.
,
1992
,
Centrifugal Pumps: Design and Application
,
Gulf
,
Houston, TX
.
16.
Gulich
,
J. F.
,
2010
,
Centrifugal Pumps
,
Springer
,
Berlin
.
You do not currently have access to this content.