Analytical and computational fluid dynamics (CFD) analyses confirmed the presence of apparent slip for water flow in microchannels with equivalent hydraulic diameter, Dh < 103μm, markedly decreasing the friction number, fRein. The determined values of the slip length, β, from reported measurements of pressure losses in microchannels with aspect ratio, α = 1, 1.74, 2, and 40, are 0.9, 3.5, 1.6, and 0.125 μm, respectively. For Dh > 103μm, the apparent slip in microchannels diminishes, and the friction number approaches the theoretical Hagen–Poiseuille with no slip. The analytical solution for fully developed flow successfully benchmarked the CFD approach, which is subsequently used to investigate fRein and the flow development length, Le, for uniform inlet velocity in microchannels. For fully developed flow, the analytical and CFD values of fRein are in excellent agreement. For microchannels with Dh < 103μm, fRein decreases below that of the theoretical Hagen–Poiseuille with no slip, almost exponentially with decreased Dh. The difference increases with decreased Dh, but increased α and β. The friction number for uniform inlet velocity is identical to that for fully developed flow when Dh ≤ 100 μm, but is as much as 9% higher for larger Dh. For uniform inlet velocity, Le negligibly depends on α and β, but increases with increased Rein. The obtained values are correlated as: Le/Dh = 0.068 Rein.

References

References
1.
Celata
,
G. P.
,
Cumo
,
M.
,
McPhail
,
S.
, and
Zummo
,
G.
,
2006
, “
Characterization of Fluid Dynamic Behavior and Channel Wall Effects in Microtubes
,”
Int. J. Heat Fluid Flow
,
27
(
1
), pp.
135
143
.
2.
Hsieh
,
S. S.
,
Lin
,
C. Y.
,
Huang
,
C. F.
, and
Tsai
,
H. H.
,
2004
, “
Liquid Flow in a Micro-Channel
,”
J. Micromech. Microeng.
,
14
(
4
), pp.
436
445
.
3.
Pfund
,
D.
,
Rector
,
D.
,
Shekarriz
,
A.
,
Popescu
,
A.
, and
Welty
,
J.
,
2000
, “
Pressure Drop Measurement in a Micro-Channel
,”
J. Fluid Mech. Transp. Phenom.
,
46
(
8
), pp.
1496
1507
.
4.
Xu
,
J.
,
Yang
,
C.
,
Sheng
,
Y. J.
, and
Tsao
,
H. K.
,
2015
, “
Apparent Hydrodynamic Slip Induced by Density Inhomogeneities at Fluid-Solid Interfaces
,”
J. Soft Mater.
,
35
(
35
), pp.
6916
6920
.
5.
Huang
,
K.
, and
Szlufarska
,
I.
,
2014
, “
Green-Kubo Relation for Friction at Liquid-Solid Interfaces
,”
J. Phys. Rev. E
,
89
(
3
), p.
032119
.
6.
Liao
,
Y. C.
,
Li
,
Y. C.
, and
Wei
,
H. H.
,
2013
, “
Drastic Changes in Interfacial Hydrodynamics Due to Wall Slippage: Slip-Intensified Film Thinning, Drop Spreading and Capillary Instability
,”
J. Phys. Rev. Lett.
,
111
(
13
), p.
136001
.
7.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B.
,
2002
, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3477
3489
.
8.
Bao
,
I.
,
Priezjev
,
N. V.
,
Hu
,
H.
, and
Luo
,
K.
,
2017
, “
Effects of Viscous Heating and Wall-Fluid Interaction Energy on Rate-Dependent Slip Behavior of Simple Fluids
,”
J. Phys. Rev. E
,
96
(
3
), p.
33110
.
9.
Bonaccurso
,
E.
,
Butt
,
H. J.
, and
Craig
,
V. S. J.
,
2003
, “
Surface Roughness and Hydrodynamics Boundary Slip of a Newtonian Liquid
,”
J. Phys. Rev. Lett.
,
90
(
14
), p.
144501
.
10.
Craig
,
V. S. J.
,
Neto
,
C.
, and
Williams
,
D. R. M.
,
2001
, “
Shear-Dependent Boundary Slip in Aqueous Newtonian Liquid
,”
J. Phys. Rev. Lett.
,
87
(
5
), p.
054504
.
11.
Zhu
,
Y.
, and
Granick
,
S.
,
2002
, “
Limits of the Hydrodynamics No-Slip Boundary Condition
,”
J. Phys. Rev. Lett.
,
88
(
10
), p.
106102
.
12.
El-Genk
,
M. S.
, and
Yang
,
I.
,
2009
, “
Numerical Analysis of Laminar Flow in Micro-Tubes With a Slip Boundary
,”
J. Energy Convers. Manage.
,
50
(
6
), pp.
1481
1490
.
13.
El-Genk
,
M. S.
, and
Yang
,
I.
,
2008
, “
Friction Numbers and Viscous Dissipation Heating for Laminar Flows in Microtubes
,”
ASME J. Heat Transfer
,
130
(
8
), p.
082405
.
14.
Baudry
,
J.
,
Charlaix
,
E.
,
Tonck
,
A.
, and
Mazuyer
,
D.
,
2001
, “
Experimental Evidence for a Large Slip Effect at a Nonwetting Fluid-Solid Interface
,”
Langmuir
,
17
(
17
), pp.
5232
5236
.
15.
Lauga
,
E.
,
Brenner
,
M. P.
, and
Stone
,
H. A.
,
2007
,
Handbook of Experimental Fluid Mechanics
,
Springer
,
New York
.
16.
Neto
,
C.
,
Evans
,
D. R.
,
Bonaccurso
,
E.
,
Butt
,
H. J.
, and
Craig
,
V. S. J.
,
2005
, “
Boundary Slip in Newtonian Liquids: A Review of Experimental Studies
,”
Rep. Prog. Phys.
,
68
(
12
), pp.
2859
2897
.
17.
Schnell
,
E.
,
1956
, “
Slippage of Water Over Non-Wettable Surfaces
,”
J. Appl. Phys.
,
27
(
10
), pp.
243
251
.
18.
Boehnke
,
U. C.
,
Remmler
,
T.
,
Mostschmann
,
H.
,
Wurlitzer
,
S.
,
Hauwede
,
J.
, and
Fischer
,
T. M.
,
1999
, “
Partial Air Wetting on Solvophobic Surfaces in Polar Liquids
,”
J. Colloid Interface Sci.
,
211
(
2
), pp.
243
251
.
19.
Yang
,
X.
, and
Zheng
,
Z. C.
,
2010
, “
Effects of Channel Scale on Slip Length of Flow Om Micro/Nanochannels
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061201
.
20.
Tretheway
,
D.
, and
Meinhart
,
C. D.
,
2004
, “
A Generating Mechanism for Apparent Fluid Slip in Hydrophobic Microchannels
,”
J. Phys. Fluids
,
16
(
5
), pp.
1509
1515
.
21.
Lumma
,
D.
,
Best
,
A.
,
Gansen
,
A.
,
Feuillebois
,
F.
,
Radler
,
J. O.
, and
Vinogradova
,
O. I.
,
2003
, “
Flow Profile Near a Wall Measured by Double-Focus Fluorescence Cross-Correlation
,”
J. Phys. Rev. E
,
67
(
5
), p.
056313
.
22.
Schmitz
,
R.
,
Yordanov
,
S.
,
Butt
,
H. J.
,
Koynov
,
K.
, and
Dunweg
,
B.
,
2011
, “
Studying Flow Close to an Interface by Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy: Quantitative Data Analysis
,”
J. Phys. Rev. E
,
84
(
6
), p.
066306
.
23.
Choi
,
C. H.
,
Westin
,
K. J. A.
, and
Breuer
,
K. S.
,
2003
, “
Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels
,”
J. Phys. Fluids
,
15
(
10
), pp.
2897
2902
.
24.
Hao
,
P. F.
,
Wong
,
C.
,
Yao
,
Z. H.
, and
Zhu
,
K. Q.
,
2009
, “
Laminar Drag Reduction in Hydrophobic Microchannels
,”
J. Chem. Eng.
,
32
(
6
), pp.
912
918
.
25.
Hsieh
,
S. S.
,
Li
,
S. Y.
, and
Hsieh
,
Y. C.
,
2017
, “
Velocity Measurement in DI Water Flow in Microchannels With Hydrophilic and Hydrophobic Surfaces
,”
J. Appl. Therm. Eng.
,
127
, pp.
901
905
.
26.
Enright
,
R.
,
Eason
,
C.
,
Dalton
,
T.
,
Hodes
,
M.
,
Salamon
,
V.
,
Kolodner
,
P.
, and
Krupenkin
,
T.
,
2006
, “
Friction Factors and Nusselt Numbers in Microchannels With Superhydrophobic Walls
,”
ASME
Paper No. ICNMM2006-96134.
27.
Sohankar
,
A.
,
Riahi
,
M.
, and
Shirani
,
E.
,
2017
, “
Numerical Investigation of Heat Transfer and Pressure Drop in a Rotating U-Shaped Hydrophobic Microchannel With Slip Flow and Temperature Jump Boundary Conditions
,”
J. Appl. Therm. Eng.
,
117
, pp.
308
321
.
28.
Akbari
,
M.
,
Tamayol
,
A.
, and
Bahrami
,
M.
,
2013
, “
A General Model for Predicting Low Reynolds Number Flow Pressure Drop in Non-Uniform Microchannels of Non-Circular Cross Section in Continuum and Slip-Flow Regimes
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071205
.
29.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
,
New York
.
30.
White
,
F.
,
2006
,
Viscous Fluid Flow
,
3rd ed.
,
McGraw-Hill
,
New York
.
31.
Xu
,
B.
,
Ooi
,
K. T.
,
Wong
,
N. T.
, and
Choi
,
W. K.
,
2000
, “
Experimental Investigation of Flow Friction for Liquid Flow in Microchannels
,”
Int. Commun. Heat Mass Transfer
,
27
(
8
), pp.
1165
1176
.
32.
Kandilkar
,
S. G.
,
Joshi
,
S.
, and
Tian
,
S.
,
2003
, “
Effect of Surface Roughness on Heat Transfer and Fluid Flow of Distilled Water
,”
J. Heat Transfer Eng.
,
24
(
3
), pp.
4
16
.
33.
Li
,
Z. X.
,
Du
,
D. X.
, and
Guo
,
Z. Y.
,
2003
, “
Experimental Study on Flow Characteristics of Liquid in Circular Microtubes
,”
J. Microscale Thermophys. Eng.
,
7
(
3
), pp.
253
265
.
34.
Lelea
,
D.
,
Nishio
,
S.
, and
Takano
,
K.
,
2004
, “
The Experimental Research on Microtube Heat Transfer and Fluid Flow of Distilled Water
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2817
2830
.
35.
CD-ADAPCO
,
2017
, “
User Manual, Star-CCM+ Release 12.02
,” Siemens Ltd., Munich, Germany, pp.
2454
2584
.
36.
Kim
,
B.
,
2016
, “
An Experimental Study on Fully Developed Laminar Flow and Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
,
62
, pp.
224
232
.
37.
Pfahler
,
J. N.
,
1992
, “
Liquid Transport in Micron and Submicron Size Channels
,” Ph.D. dissertation, University of Pennsylvania, Philadelphia, PA.
38.
Petropoulos
,
A.
,
Kaltsas
,
G.
,
Randjelovic
,
D.
, and
Gogolides
,
E.
,
2010
, “
Study of Flow and Pressure Field in Microchannels With Various Cross-Section Areas
,”
J. Microelectron. Eng.
,
87
(
5–8
), pp.
827
829
.
39.
Lee
,
S. Y.
, and
Wereley
,
S. T.
,
2002
, “
Microchannel Flow Measurement Using Micro Particle Image Velocimetry
,”
ASME
Paper No. IMECE2002-33682.
40.
Hao
,
P. F.
,
He
,
F.
, and
Zhu
,
K. Q.
,
2005
, “
Flow Characteristics in a Trapezoidal Silicon Microchannel
,”
J. Micromech. Microeng.
,
15
(
6
), pp.
1362
1368
.
41.
Lee
,
S. Y.
,
Jang
,
J.
, and
Wereley
,
S. T.
,
2008
, “
Effects of Planar Inlet Plenums on the Hydrodynamically Developing Flows in Rectangular Microchannels of Complementary Aspect Ratios
,”
J. Microfluid Nanofluid
,
5
(
1
), pp.
1
12
.
42.
Han
,
L. S.
,
1960
, “
Hydrodynamic Entrance Lengths for Incompressible Laminar Flow in Rectangular Ducts
,”
ASME J. Appl. Mech.
,
27
(
3
), pp.
403
409
.
43.
Sparrow
,
E. M.
,
Hixon
,
C. W.
, and
Shavit
,
G.
,
1967
, “
Experiments on Laminar Flow Development in Rectangular Ducts
,”
ASME J. Basic Eng.
,
89
(
1
), pp.
116
123
.
44.
Goldstein
,
R. J.
, and
Kreis
,
D. K.
,
1970
, “
Measurement of Laminar Flow Development in a Square Duct Using a Laser-Doppler Flowmeter
,”
ASME J. Appl. Mech.
,
34
(
4
), pp.
813
818
.
45.
Tu
,
X.
, and
Hrnjak
,
P.
,
2003
, “
Experimental Investigation of Single-Phase Flow Pressure Drop Through Rectangular Microchannels
,”
ASME
Paper No. ICMM2003-1028.
46.
Baviere
,
R.
, and
Ayela
,
F.
,
2004
, “
Micromachined Strain Gauges for the Determination of Liquid Flow Friction Coefficients in Microchannels
,”
J. Meas. Sci. Technol.
,
15
(
2
), pp.
377
383
.
47.
Park
,
H.
,
Pak
,
J. J.
,
Son
,
S. Y.
,
Lim
,
G.
, and
Song
,
I.
,
2003
, “
Fabrication of a Microchannel Integrated With Inner Sensors and the Analysis of Its Laminar Flow Characteristics
,”
J. Sens. Actuators A
,
103
(
3
), pp.
317
329
.
48.
Gale
,
B. K.
,
1999
, “
Scaling Effects in a Microfabricated Electrical Field-Flow Fractionation System With an Integrated Detector
,” Ph.D. dissertation, University of Utah, Salt Lake City, UT.
49.
Harms
,
T. M.
,
Kazmierczak
,
M. J.
, and
Gerner
,
F. M.
,
1999
, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
,
20
(
2
), pp.
149
157
.
50.
Nagayama
,
G.
,
Matsumoto
,
T.
,
Fukushima
,
K.
, and
Tsuruta
,
T.
,
2017
, “
Scale Effect of Slip Boundary Condition at Solid-Liquid Interface
,”
Sci. Rep.
,
7
(
1
), p.
7
.
51.
Wang
,
Y.
, and
Wang
,
Z. G.
,
2016
, “
Single Phase Flow Characteristics of FC-72 and Ethanol in High Aspect Ratio Rectangular Mini- and Micro-Channels
,”
J. Micromech. Microeng.
,
26
(
11
), p.
115003
.
52.
Garach
,
D. V.
,
2014
, “
Heat Transfer and Pressure Drop in Microchannels With Different Inlet Geometries for Laminar and Transitional Flow of Water
,”
Master thesis
, University of Pretoria, Pretoria, South Africa.https://repository.up.ac.za/handle/2263/40831
53.
Jung
,
J. Y.
, and
Kwak
,
H. Y.
,
2008
, “
Fluid Flow and Heat Transfer in Microchannels With Rectangular Cross Section
,”
J. Heat Mass Transfer
,
44
(
9
), pp.
1041
1049
.
54.
Rathnasamy
,
R.
,
Arakeri
,
J. H.
, and
Srinivasan
,
K.
,
2005
, “
Experimental Investigation of Fluid Flow in Long Rectangular Micro-Channels
,”
J. Process Mech. Eng.
,
219
(
3
), pp.
227
235
.
55.
Kohl
,
M. J.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Sadowski
,
D. L.
,
2005
, “
An Experimental Investigation of Microchannel Flow With Internal Pressure Measurements
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1518
1533
.
56.
Liu
,
D.
, and
Garimella
,
S. V.
,
2004
, “
Investigation of Liquid Flow in Microchannels
,”
J. Thermophys. Heat Transfer
,
18
(
1
), pp.
65
77
.
You do not currently have access to this content.