Large eddy simulation (LES) is conducted for the flow over the shell side of a helical coil steam generator (HCSG) heat exchanger. Simulations are conducted on a simplified experimental test section that represents a one-column region of the helical coils using half-rods. Although the rods are wall-bounded, the flow still exhibits the turbulent characteristics and fluctuations from vortex shedding that one would expect from crossflow around a cylinder. The spectral element, computational fluid dynamics (CFD) code Nek5000, is used to capture the physics, and the results are compared with particle image velocimetry (PIV) measurements. In order to ensure that the turbulence is resolved, analysis is conducted by using the Taylor length scales and normalized wall distance. Sensitivity to the inlet boundary conditions (BCs) and the spatial discretization for different polynomial order solutions are also studied, finding only minor differences between each case. Pressure drop and velocity statistics show reasonable agreement with PIV. Proper orthogonal decomposition (POD) analysis reveals that the primary modes are similar between experiment and simulation, although the LES predicts higher turbulent kinetic energy than does PIV. Overall, the study establishes the resolution and resources required in order to conduct a high-fidelity simulation over 12 helical rods.

References

References
1.
Prabhanjan
,
D. G.
,
Raghavan
,
G. S. V.
, and
Rennie
,
T. J.
,
2002
, “
Comparison of Heat Transfer Rates Between a Straight Tube Heat Exchanger and a Helically Coiled Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
,
29
(
2
), pp.
185
191
.
2.
Doyle
,
J.
,
Haley
,
B.
,
Fachiol
,
C.
,
Galyean
,
B.
, and
Ingersoll
,
D. T.
,
2016
, “
Highly Reliable Nuclear Power for Mission-Critical Applications
,” International Congress on Advances in Nuclear Power Plants (
ICAPP
), San Francisco, CA, Apr. 17–20, pp. 1–8.http://www.nuscalepower.com/images/our_technology/power-reliability_icapp16_final.pdf
3.
Carelli
,
M. D.
,
Conway
,
L. E.
,
Oriani
,
L.
,
Petrović
,
B.
,
Lombardi
,
C. V.
,
Ricotti
,
M. E.
,
Barroso
,
A. C. O.
,
Collado
,
J. M.
,
Cinotti
,
L.
,
Todreas
,
N. E.
, and
Grgić
,
D.
,
2004
, “
The Design and Safety Features of the IRIS Reactor
,”
Nucl. Eng. Des.
,
230
(
1–3
), pp.
151
167
.
4.
Simoneau
,
R. J.
, and
VanFossen
,
G. J.
,
1984
, “
Effect of Location in an Array on Heat Transfer to a Short Cylinder in Crossflow
,”
ASME J. Heat Transfer
,
106
(
1
), pp.
42
48
.
5.
Sumner
,
D.
,
2010
, “
Two Circular Cylinders in Cross-Flow: A Review
,”
J. Fluids Struct.
,
26
(
6
), pp.
849
899
.
6.
Rivas
,
E.
, and
Rojas
,
E.
,
2016
, “
Heat Transfer Correlation Between Molten Salts and Helical-Coil Tube Bundle Steam Generator
,”
Int. J. Heat Mass Transfer
,
93
, pp.
500
512
.
7.
Kharat
,
R.
,
Bhardwaj
,
N.
, and
Jha
,
R. S.
,
2009
, “
Development of Heat Transfer Coefficient Correlation for Concentric Helical Coil Heat Exchanger
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2300
2308
.
8.
Jayakumar
,
J. S.
,
Mahajani
,
S. M.
,
Mandal
,
J. C.
,
Vijayan
,
P. K.
, and
Bhoi
,
R.
,
2008
, “
Experimental and CFD Estimation of Heat Transfer in Helically Coiled Heat Exchangers
,”
Chem. Eng. Res. Des.
,
86
(
3
), pp.
221
232
.
9.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, New York.
10.
Yuan
,
H.
,
Solberg
,
J.
,
Merzari
,
E.
,
Kraus
,
A.
, and
Grindeanu
,
I.
,
2017
, “
Flow-Induced Vibration Analysis of a Helical Coil Steam Generator Experiment Using Large Eddy Simulation
,”
Nucl. Eng. Des.
,
322
, pp.
547
562
.
11.
Williams
,
D. K.
,
Fassett
,
D. P.
,
Webb
,
B. J.
,
Bees
,
W. J.
, and
Kruskamp
,
A. S.
,
2014
, “
Helical Coil Steam Generator
,” U.S. Patent No. 8752510B2.
12.
Joh
,
S.
,
2011
, “
Thermal Hydraulic Studies on Helical Coil Steam Generator by CFD
,”
ASME
Paper No. PVP2011-57901.
13.
Lee
,
S.
,
Delgado
,
M.
,
Lee
,
S. J.
, and
Hassan
,
Y. A.
,
2017
, “
Flow Visualization in a Simplified Helically Coiled Steam Generator Geometry
,” International Congress on Advances in Nuclear Power Plants (
ICAPP '17
), Fukui-Kyoto, Japan, Apr. 24–28, pp. 1–5.
14.
Delgado
,
M.
,
Lee
,
S.
, and
Hassan
,
Y. A.
,
2017
, “
Differences in Experimental Friction Factors Across Two Model Helical Coil Steam Generators
,”
17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
, Xi'an, China, Sept. 3–8, pp. 1–7.
15.
Delgado
,
M.
,
Lee
,
S.
,
Hassan
,
Y. A.
, and
Anand
,
N. K.
,
2018
, “
Flow Visualization Study at the Interface of Alternating Pitch Tube Bundles in a Model Helical Coil Steam Generator Using Particle Image Velocimetry
,”
Int. J. Heat Mass Transfer
,
122
, pp.
614
628
.
16.
Deville
,
M. O.
,
Fischer
,
P. F.
, and
Mund
,
E. H.
,
2002
,
High-Order Methods for Incompressible Fluid Flow
,
Cambridge University Press
, Cambridge, UK.
17.
Offermans
,
N.
,
Marin
,
O.
,
Schanen
,
M.
,
Gong
,
J.
,
Fischer
,
P.
,
Schlatter
,
P.
,
Obabko
,
A.
,
Peplinski
,
A.
,
Hutchinson
,
M.
, and
Merzari
,
E.
,
2016
, “
On the Strong Scaling of the Spectral Element Solver Nek5000 on Petascale Systems
,”
Exascale Applications and Software Conference
, pp. 1–10.
18.
Fischer
,
P.
,
Lottes
,
J.
,
Kerkemeier
,
S.
,
Marin
,
O.
,
Heisey
,
K.
,
Obabko
,
E.
,
Merzari
,
A.
, and
Peet
,
Y.
,
2016
, “
Nek5000 User Documentation
,” Argonne National Laboratory, Lemont, IL, Report No. ANL/MCS-TM-351.
19.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
,
2006
, “
A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
585
593
.
20.
Cavar
,
D.
, and
Meyer
,
K. E.
,
2012
, “
LES of Turbulent Jet in Cross-Flow—Part 2: POD Analysis and Identification of Coherent Structures
,”
Int. J. Heat Fluid Flow
,
36
, pp.
35
46
.
21.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
22.
Willcox
,
K.
, and
Peraire
,
J.
,
2002
, “
Balanced Model Reduction Via the Proper Orthogonal Decomposition
,”
AIAA J.
,
40
(
11
), pp.
2323
2330
.
23.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures—Part II: Symmetries and Transformations
,”
Q. Appl. Math.
,
45
(
3
), pp.
573
582
.
24.
Fick
,
L. H.
,
Merzari
,
E.
, and
Hassan
,
Y. A.
,
2017
, “
Direct Numerical Simulation of Pebble Bed Flows: Database Development and Investigation of Low-Frequency Temporal Instabilities
,”
ASME J. Fluids Eng.
,
139
(
5
), pp.
139
150
.
25.
Merzari
,
E.
,
Obabko
,
A.
,
Fischer
,
P.
,
Halford
,
N.
,
Walker
,
J.
,
Siegel
,
A.
, and
Yu
,
Y.
,
2017
, “
Large-Scale Large Eddy Simulation of Nuclear Reactor Flows: Issues and Perspectives
,”
Nucl. Eng. Des.
,
312
, pp.
86
98
.
26.
Merzari
,
E.
,
Fischer
,
P.
, and
Walker
,
J.
,
2015
, “
Large-Scale Simulation of Rod Bundles: Coherent Structure Recognition and Stability Analysis
,”
ASME
Paper No. AJKFluids2015-29719.
27.
Merzari
,
E.
,
Pointer
,
W. D.
, and
Fischer
,
P.
,
2013
, “
Numerical Simulation and Proper Orthogonal Decomposition of the Flow in a Counter-Flow T-Junction
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091304
.
28.
Österlund
,
J. M.
,
1999
, “
Experimental Studies of Zero Pressure-Gradient Turbulent Boundary Layer Flow
,” Royal Institute of Technology, Stockholm, Sweden.
29.
Bradshaw
,
P.
, and
Huang
,
G. P.
,
1995
, “
The Law of the Wall in Turbulent Flow
,”
Proc. R. Soc. London, Ser. A
,
451
(
1941
), pp.
165
188
.
30.
Taylor
,
G. I.
,
1938
, “
The Spectrum of Turbulence
,”
Proc. R. Soc. London, Ser. A
,
164
(
919
), pp. 476–481.
31.
Orszag
,
S. A.
,
1980
, “
Spectral Methods for Problems in Complex Geometrics
,”
J. Comput. Phys.
,
37
(
1
), pp.
70
92
.
32.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.
You do not currently have access to this content.